科目: 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,已知點(diǎn)A(0,1),點(diǎn)P在線段OA上,以AP為半徑的⊙P周長(zhǎng)為1.點(diǎn)M從A開(kāi)始沿⊙P按逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng),射線AM交x軸于點(diǎn)N(n,0),設(shè)點(diǎn)M轉(zhuǎn)過(guò)的路程為m(0<m<1).
(1)當(dāng)m=時(shí),n=_____;
(2)隨著點(diǎn)M的轉(zhuǎn)動(dòng),當(dāng)m從變化到時(shí),點(diǎn)N相應(yīng)移動(dòng)的路徑長(zhǎng)為_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,己知△ABC,任取一點(diǎn)O,連接AO,BO,CO,并取它們的中點(diǎn)D,E,F,得△DEF,則下列說(shuō)法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長(zhǎng)比為1∶2;④△ABC與△DEF的面積比為4∶1. 正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A. 為了解全省中學(xué)生的心理健康狀況,宜采用普查方式
B. 擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣都是正面朝上這一事件發(fā)生的概率為
C. 擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件
D. 甲乙兩人在相同條件下各射擊10次,他們成績(jī)的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績(jī)較穩(wěn)定
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=5cm,BD=8cm,動(dòng)點(diǎn)P從點(diǎn)B開(kāi)始沿BC邊勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D開(kāi)始沿對(duì)角線DB勻速運(yùn)動(dòng),它們的運(yùn)動(dòng)速度均為1cm/s,過(guò)點(diǎn)Q作QE⊥CD,與CD交于點(diǎn)E,連接PQ,點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s),0<t≤5.
(1)當(dāng)PQ∥CD時(shí),求t的值;
(2)設(shè)四邊形PQEC的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式;
(3)當(dāng)P,Q兩點(diǎn)運(yùn)動(dòng)到使∠PQE=60°時(shí),求四邊形PQEC的面積;
(4)是否存在某一時(shí)刻t,使PQ+QE的值最。咳舸嬖,請(qǐng)求t的值,并求出此時(shí)PQ+QE的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】問(wèn)題再現(xiàn):
數(shù)形結(jié)合是解決數(shù)學(xué)問(wèn)題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識(shí)變得直觀起來(lái)并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過(guò)表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋?zhuān)纾豪脠D形的幾何意義推證完全平方公式.將一個(gè)邊長(zhǎng)為a的正方形的邊長(zhǎng)增加b,形成兩個(gè)矩形和兩個(gè)正方形,如圖1,這個(gè)圖形的面積可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2=a2+2ab+b2
這就驗(yàn)證了兩數(shù)和的完全平方公式.
問(wèn)題提出:
如何利用圖形幾何意義的方法推證:13+23=32 如圖2,A表示1個(gè)1×1的正方形,即:1×1×1=13,B表示1個(gè)2×2的正方形,C與D恰好可以拼成1個(gè)2×2的正方形,因此:B、C、D就可以表示2個(gè)2×2的正方形,即:2×2×2=23,而A、B、C、D恰好可以拼成一個(gè)(1+2)×(1+2)的大正方形,由此可得:13+23=(1+2)2=32
嘗試解決:
請(qǐng)你類(lèi)比上述推導(dǎo)過(guò)程,利用圖形幾何意義方法推證:13+23+33= (要求自己構(gòu)造圖形并寫(xiě)出推證過(guò)程)
類(lèi)比歸納:
請(qǐng)用上面的表示幾何圖形面積的方法探究:13+23+33+…+n3= (要求直接寫(xiě)出結(jié)論,不必寫(xiě)出解題過(guò)程)
實(shí)際應(yīng)用:
圖3是由棱長(zhǎng)為1的小正方體搭成的大正方體,圖中大小正方體一共有多少個(gè)?為了正確數(shù)出大小正方體的總個(gè)數(shù),我們可以分類(lèi)統(tǒng)計(jì),即分別數(shù)出棱長(zhǎng)是1,2,3和4的正方體的個(gè)數(shù),再求總和.
例如:棱長(zhǎng)是1的正方體有:4×4×4=43個(gè),棱長(zhǎng)是2的正方體有:3×3×3=33個(gè),棱長(zhǎng)是3的正方體有:2×2×2=23個(gè),棱長(zhǎng)是4的正方體有:1×1×l=13個(gè),然后利用(3)類(lèi)比歸納的結(jié)論,可得: = 圖4是由棱長(zhǎng)為1的小正方體成的大正方體,圖中大小正方體一共有 個(gè).
逆向應(yīng)用:
如果由棱長(zhǎng)為1的小正方體搭成的大正方體中,通過(guò)上面的方式數(shù)出的大小正方體一共有44100個(gè),那么棱長(zhǎng)為1的小正方體一共有 個(gè).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】我們常見(jiàn)的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過(guò)鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱(chēng)為“鍋線”,鍋口直徑為,鍋深,鍋蓋高(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標(biāo)系如圖①所示(圖②是備用圖),如果把鍋縱斷面的拋物線記為,把鍋蓋縱斷面的拋物線記為.
求和的解析式;
如果炒菜鍋時(shí)的水位高度是,求此時(shí)水面的直徑;
如果將一個(gè)底面直徑為,高度為的圓柱形器皿放入炒菜鍋內(nèi)蒸食物,鍋蓋能否正常蓋上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連接AP并延長(zhǎng)AP交CD于F點(diǎn),連接BP.
(1)求證:四邊形AECF為平行四邊形;
(2)若BC= AB,判斷△ABP的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y1=與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(2,2)、B(,n).
(1)求這兩個(gè)函數(shù)解析式;
(2)直接寫(xiě)出不等式y2>1y的解集.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,校園內(nèi)有兩幢高度相同的教學(xué)樓AB,CD,大樓的底部B,D在同一平面上,兩幢樓之間的距離BD長(zhǎng)為24米,小明在點(diǎn)E(B,E,D在一條直線上)處測(cè)得教學(xué)樓AB頂部的仰角為45°,然后沿EB方向前進(jìn)8米到達(dá)點(diǎn)G處,測(cè)得教學(xué)樓CD頂部的仰角為30°.已知小明的兩個(gè)觀測(cè)點(diǎn)F,H距離地面的高度均為1.6米,求教學(xué)樓AB的高度AB長(zhǎng).(精確到0.1米)參考值:≈1.41,≈1.73.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】為了給游客提供更好的服務(wù),某景區(qū)隨機(jī)對(duì)部分游客進(jìn)行了關(guān)于“景區(qū)服務(wù)工作滿(mǎn)意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表.
滿(mǎn)意度 | 人數(shù) | 所占百分比 |
非常滿(mǎn)意 | 12 | 10% |
滿(mǎn)意 | 54 | m |
比較滿(mǎn)意 | n | 40% |
不滿(mǎn)意 | 6 | 5% |
根據(jù)圖表信息,解答下列問(wèn)題:
(1)本次調(diào)查的總?cè)藬?shù)為______,表中m的值為_______;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)據(jù)統(tǒng)計(jì),該景區(qū)平均每天接待游客約3600人,若將“非常滿(mǎn)意”和“滿(mǎn)意”作為游客對(duì)景區(qū)服務(wù)工作的肯定,請(qǐng)你估計(jì)該景區(qū)服務(wù)工作平均每天得到多少名游客的肯定.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com