科目: 來(lái)源: 題型:
【題目】圖2、圖3是某公共汽車雙開門的俯視示意圖,ME,EF,FN是門軸的滑動(dòng)軌道,,兩門AB,CD的門軸A,B,C,D都在滑動(dòng)軌道上,兩門關(guān)閉時(shí)圖2,A,D分別在E,F處,門縫忽略不計(jì)(即B,C重合);兩門同時(shí)開啟,A,D分別沿,的方向勻速滑動(dòng),帶動(dòng)B,C滑動(dòng);B到達(dá)E時(shí),C恰好到達(dá)F,此時(shí)兩門完全開啟.已知.(1)如圖3,當(dāng)時(shí),______cm.(2)在(1)的基礎(chǔ)上,當(dāng)A向M方向繼續(xù)滑動(dòng)15cm時(shí),四邊形ABCD的面積為______.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】將一張正方形紙片按如圖步驟,通過(guò)折疊得到圖④,再沿虛線剪去一個(gè)角,展開鋪平后得到圖⑤,其中是折痕.若正方形與五邊形的面積相等,則的值是( )
A.B.C.D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在同一平面上,兩塊斜邊相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜邊AC完全重合,且頂點(diǎn)B,D分別在AC的兩旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm
(1)填空:AD= (cm),DC= (cm)
(2)點(diǎn)M,N分別從A點(diǎn),C點(diǎn)同時(shí)以每秒1cm的速度等速出發(fā),且分別在AD,CB上沿A→D,C→B方向運(yùn)動(dòng),點(diǎn)N到AD的距離(用含x的式子表示)
(3)在(2)的條件下,取DC中點(diǎn)P,連接MP,NP,設(shè)△PMN的面積為y(cm2),在整個(gè)運(yùn)動(dòng)過(guò)程中,△PMN的面積y存在最大值,請(qǐng)求出y的最大值.
(參考數(shù)據(jù)sin75°=,sin15°=)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,將正n邊形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點(diǎn)O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點(diǎn)P,連接PO,我們稱∠OAB為“疊弦角”,△AOP為“疊弦三角形”.
(探究證明)
(1)請(qǐng)?jiān)趫D1和圖2中選擇其中一個(gè)證明:“疊弦三角形”(△AOP)是等邊三角形;
(2)如圖2,求證:∠OAB=∠OAE′.
(歸納猜想)
(3)圖1、圖2中的“疊弦角”的度數(shù)分別為 , ;
(4)圖n中,“疊弦三角形” 等邊三角形(填“是”或“不是”)
(5)圖n中,“疊弦角”的度數(shù)為 (用含n的式子表示)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(-1,-2),拋物線F:y=x2-2mx+m2-2與直線x=-2交于點(diǎn)P.
(1)當(dāng)拋物線F經(jīng)過(guò)點(diǎn)C時(shí),求它的解析式;
(2)設(shè)點(diǎn)P的縱坐標(biāo)為yP,求yP的最小值,此時(shí)拋物線F上有兩點(diǎn)(x1,y1),(x2,y2),且x1<x2≤-2,比較y1與y2的大小.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價(jià)是80元/kg,銷售單價(jià)不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時(shí)間后得到如下數(shù)據(jù):
銷售單價(jià)x(元/kg) | 120 | 130 | … | 180 |
每天銷量y(kg) | 100 | 95 | … | 70 |
設(shè)y與x的關(guān)系是我們所學(xué)過(guò)的某一種函數(shù)關(guān)系.
(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)銷售單價(jià)為多少時(shí),銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AD、BC的中點(diǎn),對(duì)角線AC分別交BE,DF于點(diǎn)G、H.求證:AG=CH.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com