科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,G是⊙O上兩點,且,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線;
(2)若,求證:AE=AO;
(3)連接 AD,在(2)的條件下,若CD ,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(﹣2,3),點B的坐標為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點P,使△APC是直角三角形?若存,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目: 來源: 題型:
【題目】為了提高學生閱讀能力,我區(qū)某校倡議八年級學生利用雙休日加強課外閱讀,為了解同學們閱讀的情況,學校隨機抽查了部分同學周末閱讀時間,并且得到數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息回答下列問題:
(1)將條形統(tǒng)計圖補充完整;被調(diào)查的學生周末閱讀時間眾數(shù)是多少小時,中位數(shù)是多少小時;
(2)計算被調(diào)查學生閱讀時間的平均數(shù);
(3)該校八年級共有500人,試估計周末閱讀時間不低于1.5小時的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知:拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C,點D為頂點,連接BD,CD,拋物線的對稱軸與x軸交與點E.
(1)求拋物線解析式及點D的坐標;
(2)G是拋物線上B,D之間的一點,且S四邊形CDGB=4S△DGB,求出G點坐標;
(3)在拋物線上B,D之間是否存在一點M,過點M作MN⊥CD,交直線CD于點N,使以C,M,N為頂點的三角形與△BDE相似?若存在,求出滿足條件的點M的坐標,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】天府新區(qū)某校數(shù)學活動小組在一次活動中,對一個數(shù)學問題作如下探究:
(1)問題發(fā)現(xiàn):如圖1,在等邊△ABC中,點P是邊BC上任意一點,連接AP,以AP為邊作等邊△APQ,連接CQ.求證:BP CQ;
(2)變式探究:如圖2,在等腰△ABC中,ABBC,點P是邊BC上任意一點,以AP為腰作等腰△APQ,使AP PQ,APQ ABC,連接CQ.判斷∠ABC和∠ACQ的數(shù)量關系,并說明理由;
(3)解決問題:如圖3,在正方形ADBC中,點P是邊BC上一點,以AP為邊作正方形 APEF,Q是正方形APEF的中心,連接CQ.若正方形APEF的邊長為6,,求正方形ADBC的邊長.
查看答案和解析>>
科目: 來源: 題型:
【題目】為支持國家南水北調(diào)工程建設,小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場調(diào)查得知,當種植櫻桃的面積x不超過15畝時,每畝可獲得利潤y=1900元;超過15畝時,每畝獲得利潤y(元)與種植面積x(畝)之間的函數(shù)關系如下表(為所學過的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)
x(畝) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(1)請求出種植櫻桃的面積超過15畝時每畝獲得利潤y與x的函數(shù)關系式;
(2)如果小王家計劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過50畝,設小王家種植x畝櫻桃所獲得的總利潤為W元,求小王家承包多少畝荒山獲得的總利潤最大,并求總利潤W(元)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,當m,n滿足mn=k(k為常數(shù),且m>0,n>0)時,就稱點(m,n)為“等積點”.若直線y=﹣x+b(b>0)與x軸、y軸分別交于點A和點B,并且該直線上有且只有一個“等積點”,過點A與y軸平行的直線和過點B與x軸平行的直線交于點C,點E是直線AC上的“等積點”,點F是直線BC上的“等積點”,若△OEF的面積為,則OE=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com