【題目】已知坐標(biāo)平面上動(dòng)點(diǎn) 與兩個(gè)定點(diǎn) , ,且 .
(1)求點(diǎn) 的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中軌跡為 ,過(guò)點(diǎn) 的直線 所截得的線段長(zhǎng)度為8,求直線 的方程.

【答案】
(1)解:由題意,得 ,即: ,
化簡(jiǎn),得: ,
所以點(diǎn) 的軌跡方程是 .
軌跡是以 為圓心,以5為半徑的圓.
(2)解:當(dāng)直線 的斜率不存在時(shí),
此時(shí)所截得的線段的長(zhǎng)為 .
所以 符合題意.
當(dāng)直線 的斜率存在時(shí),設(shè) 的方程為
,圓心到 的距離 ,
由題意,得 ,解得 .
所以直線 的方程為 ,
.綜上,直線 的方程為 .
【解析】(1)通過(guò)利用距離之比,即可得出點(diǎn)M的軌跡方程.
(2)首先要考慮直線斜率存在和不存在兩種情況,然后設(shè)出直線方程,利用圓心到直線的距離和勾股定理求出直線的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在吸煙與患肺癌這兩個(gè)分類(lèi)變量的獨(dú)立性檢驗(yàn)的計(jì)算中,下列說(shuō)法正確的是( )
A.若 的觀測(cè)值為 ,在犯錯(cuò)誤的概率不超過(guò) 的前提下認(rèn)為吸煙與患肺癌有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺癌.
B.由獨(dú)立性檢驗(yàn)可知,在犯錯(cuò)誤的概率不超過(guò) 的前提下認(rèn)為吸煙與患肺癌有關(guān)系時(shí),我們說(shuō)某人吸煙,那么他有 的可能患有肺癌.
C.若從統(tǒng)計(jì)量中求出在犯錯(cuò)誤的概率不超過(guò) 的前提下認(rèn)為吸煙與患肺癌有關(guān)系,是指有 的可能性使得判斷出現(xiàn)錯(cuò)誤.
D.以上三種說(shuō)法都不正確.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中 中,曲線 的參數(shù)方程為 為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,已知直線 的極坐標(biāo)方程為 .
(1)設(shè) 是曲線 上的一個(gè)動(dòng)點(diǎn),當(dāng) 時(shí),求點(diǎn) 到直線 的距離的最大值;
(2)若曲線 上所有的點(diǎn)均在直線 的右下方,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),滿(mǎn)足條件y=f(x+1)是偶函數(shù),且當(dāng)x≥1時(shí),f(x)= ,則 的大小關(guān)系是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們可以用隨機(jī)模擬的方法估計(jì) 的值,如圖程序框圖表示其基本步驟(函數(shù) 是產(chǎn)生隨機(jī)數(shù)的函數(shù),它能隨機(jī)產(chǎn)生 內(nèi)的任何一個(gè)實(shí)數(shù)).若輸出的結(jié)果為 ,則由此可估計(jì) 的近似值為( )

A.3.119
B.3.124
C.3.132
D.3.151

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .
(I)若 處的切線方程為 ,求 的值;
(II)若 上為增函數(shù),求 得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在一個(gè)坡度一定的山坡AC的頂上有一高度為25m的建筑物CD,為了測(cè)量該山坡相對(duì)于水平地面的坡角θ,在山坡的A處測(cè)得∠DAC=15°,沿山坡前進(jìn)50m到達(dá)B處,又測(cè)得∠DBC=45°,根據(jù)以上數(shù)據(jù)可得cosθ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=- x3 x2+2ax在 上存在單調(diào)遞增區(qū)間,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》卷5《商功》記載一個(gè)問(wèn)題“今有圓堡瑽,周四丈八尺,高一丈一尺 .問(wèn)積幾何?答曰:二千一百一十二尺.術(shù)曰:周自相乘,以高乘之,十二而一”.這里所說(shuō)的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”. 就是說(shuō):圓堡瑽(圓柱體)的體積為 (底面圓的周長(zhǎng)的平方 高),則由此可推得圓周率 的取值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案