【題目】(導(dǎo)學(xué)號(hào):05856331)
甲、乙兩家快餐店對(duì)某日7個(gè)時(shí)段的光顧的客人人數(shù)進(jìn)行統(tǒng)計(jì)并繪制莖葉圖如下圖所示(下面簡(jiǎn)稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(Ⅰ)求a,b的值,并計(jì)算乙數(shù)據(jù)的方差;
(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機(jī)抽取兩個(gè),求至少有一個(gè)數(shù)據(jù)小于10的概率.
【答案】(1)a=7,b=2, (2)
【解析】試題分析:(1)由眾數(shù)的定義得出a的值,再根據(jù)平均數(shù)的定義求出甲、乙的平均數(shù)與方差;
(2)利用列舉法計(jì)算所求的基本事件數(shù)與對(duì)應(yīng)的概率值.
試題解析:
(Ⅰ)由眾數(shù)定義可知a=7,甲數(shù)據(jù)的平均數(shù)為=12,故乙數(shù)據(jù)的平均數(shù)為14,故8+9+10+15+17+17+20+b=98,解得b=2.
故乙數(shù)據(jù)的方差s2= (36+25+16+1+9+9+64)=.
(Ⅱ)乙數(shù)據(jù)中不大于16的數(shù)據(jù)有8,9,10,15,則從這四個(gè)數(shù)據(jù)中隨機(jī)抽取兩個(gè),所有的情況為(8,9),(8,10),(8,15),(9,10),(9,15),(10,15),則至少有一個(gè)數(shù)據(jù)小于10的為(8,9),(8,10),(8,15),(9,10),(9,15),故所求概率P=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (a∈R).
(Ⅰ)若a=1,求曲線f(x)在點(diǎn)(e,f(e))處的切線方程;
(Ⅱ)求f(x)的極值;
(Ⅲ)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856308)(12分)
如圖,∠ABC=,O為AB上一點(diǎn),3OB=3OC=2AB,PO⊥平面ABC,2DA=2AO=PO,OA=1,且DA∥PO.
(Ⅰ)求證:平面PBD⊥平面COD;
(Ⅱ)求點(diǎn)O到平面BDC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856317)為了調(diào)查“小學(xué)成績(jī)”與“中學(xué)成績(jī)”兩個(gè)變量之間是否存在相關(guān)關(guān)系,某科研機(jī)構(gòu)將所調(diào)查的結(jié)果統(tǒng)計(jì)如下表所示:
中學(xué)成績(jī)不優(yōu)秀 | 中學(xué)成績(jī)優(yōu)秀 | 總計(jì) | |
小學(xué)成績(jī)優(yōu)秀 | 5 | 20 | 25 |
小學(xué)成績(jī)不優(yōu)秀 | 10 | 5 | 15 |
總計(jì) | 15 | 25 | 40 |
則下列說(shuō)法正確的是( )
參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.46 | 0.71 | 1.32 | 2.07 | 2.71 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為“小學(xué)成績(jī)與中學(xué)成績(jī)無(wú)關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為“小學(xué)成績(jī)與中學(xué)成績(jī)有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“小學(xué)成績(jī)與中學(xué)成績(jī)無(wú)關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“小學(xué)成績(jī)與中學(xué)成績(jī)有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856336)[選修4-5:不等式選講]
已知函數(shù)f(x)=-.
(Ⅰ)解不等式:f(x)<2;
(Ⅱ)若x∈R,f(x)≥t2-t恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列函數(shù):①f(x)=()x;②f(x)=x2;③f(x)=x3;④f(x)=;⑤f(x)=log2x.其中滿足條件f()>(0<x1<x2)的函數(shù)的個(gè)數(shù)是( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018四川綿陽(yáng)南山中學(xué)高三二診熱身考試】以下四個(gè)命題中:
①某地市高三理科學(xué)生有15000名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)服從正態(tài)分布,已知,若按成績(jī)分層抽樣的方式抽取100分試卷進(jìn)行分析,則應(yīng)從120分以上(包括120分)的試卷中抽取15分;
②已知命題,,則,;
③在上隨機(jī)取一個(gè)數(shù),能使函數(shù)在上有零點(diǎn)的概率為;
④在某次飛行航程中遭遇惡劣氣候,用分層抽樣的20名男乘客中有5名暈機(jī),12名女乘客中有8名暈機(jī),在檢驗(yàn)這些乘客暈機(jī)是否與性別有關(guān)時(shí),采用獨(dú)立性檢驗(yàn),有97%以上的把握認(rèn)為與性別有關(guān).
0.15 | 0.1 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
其中真命題的序號(hào)為( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的正方形, 底面, ,且.
(Ⅰ)記線段的中點(diǎn)為,在平面內(nèi)過點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面所成角的正弦值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com