【題目】在△ABC中,

(1)A的大小;

(2)a10,b8,求△ABC的面積S.

【答案】(1) ;(2)8.

【解析】試題分析:(1)根據(jù)正弦定理得到,將式子變形為sin Bcos A=sin(AC)=sinB,進(jìn)而得到角A。(2)由余弦定理得到c=14c=2,再根據(jù)面積公式得到結(jié)果。

解析:

(1)由正弦定理,得

所以sin Bcos Acos Csin Asin Ccos A

sin Bcos Asin(AC)sinB.

因?yàn)?/span>B(0,π),所以sin B0.

所以cos A.

因?yàn)?/span>A(0,π),所以A.

(2)由余弦定理及a10,b8,得

102(8)2c22×8×c.

解之得c14c2.

所以Sbcsin A56Sbcsin A8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(其中為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為(其中為常數(shù)).

1)若直線(xiàn)與曲線(xiàn)恰好有一個(gè)公共點(diǎn),求實(shí)數(shù)的值;

2)若,求直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為(t為參數(shù)).

(1)寫(xiě)出直線(xiàn)l的普通方程與曲線(xiàn)C的直角坐標(biāo)方程;

(2)設(shè)曲線(xiàn)C經(jīng)過(guò)伸縮變換得到曲線(xiàn),設(shè)M(x,y)為上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856263)

已知拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)與x軸交于點(diǎn)N,過(guò)點(diǎn)N作圓M:(x-2)2y2=1的兩條切線(xiàn),切點(diǎn)為PQ,且|PQ|=.

(Ⅰ)求拋物線(xiàn)的方程;

(Ⅱ)過(guò)拋物線(xiàn)的焦點(diǎn)F作斜率為k1的直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連接AM,BM并延長(zhǎng)分別交拋物線(xiàn)于CD兩點(diǎn),設(shè)直線(xiàn)CD的斜率為k2,問(wèn)是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為ab,c,已知

1)求C;

2)若c=ABC的面積為,求ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20161月,某國(guó)宣布成功進(jìn)行氫彈試驗(yàn)后,AB,C,D四國(guó)領(lǐng)導(dǎo)人及聯(lián)合國(guó)主席紛紛表示譴責(zé),就此,某電視臺(tái)特別邀請(qǐng)一軍事專(zhuān)家對(duì)這一事件進(jìn)行評(píng)論,若該軍事專(zhuān)家計(jì)劃從A,B,C,D四國(guó)及聯(lián)合國(guó)主席這5個(gè)領(lǐng)導(dǎo)人中任選2人的發(fā)言態(tài)度進(jìn)行評(píng)論,那么,他評(píng)論的這2人中至少包括A、B一國(guó)領(lǐng)導(dǎo)人的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856288)

設(shè)函數(shù)f(x)=aln xxg(x)=aexx,其中a為正實(shí)數(shù).

(Ⅰ)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(2,+∞)上有最小值,求a的取值范圍;

(Ⅱ)若函數(shù)f(x)與g(x)都沒(méi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)f(x)=|2x+1||2x﹣3|,g(x)=|x+1|+|x﹣a|

(l)求fx≥1的解集;

(2)若對(duì)任意的tR,sR,都有g(s)f(t).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856331)

甲、乙兩家快餐店對(duì)某日7個(gè)時(shí)段的光顧的客人人數(shù)進(jìn)行統(tǒng)計(jì)并繪制莖葉圖如下圖所示(下面簡(jiǎn)稱(chēng)甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.

(Ⅰ)求a,b的值,并計(jì)算乙數(shù)據(jù)的方差;

(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機(jī)抽取兩個(gè),求至少有一個(gè)數(shù)據(jù)小于10的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案