【題目】在△ABC中,
(1)求A的大小;
(2)若a=10,b=8,求△ABC的面積S.
【答案】(1) ;(2)8.
【解析】試題分析:(1)根據(jù)正弦定理得到,將式子變形為sin Bcos A=sin(A+C)=sinB,進(jìn)而得到角A。(2)由余弦定理得到c=14或c=2,再根據(jù)面積公式得到結(jié)果。
解析:
(1)由正弦定理,得
所以sin Bcos A=cos Csin A+sin Ccos A,
即sin Bcos A=sin(A+C)=sinB.
因?yàn)?/span>B∈(0,π),所以sin B≠0.
所以cos A=.
因?yàn)?/span>A∈(0,π),所以A=.
(2)由余弦定理及a=10,b=8,得
102=(8)2+c2-2×8×c.
解之得c=14或c=2.
所以S=bcsin A=56或S=bcsin A=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(其中為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為(其中為常數(shù)).
(1)若直線(xiàn)與曲線(xiàn)恰好有一個(gè)公共點(diǎn),求實(shí)數(shù)的值;
(2)若,求直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為(t為參數(shù)).
(1)寫(xiě)出直線(xiàn)l的普通方程與曲線(xiàn)C的直角坐標(biāo)方程;
(2)設(shè)曲線(xiàn)C經(jīng)過(guò)伸縮變換得到曲線(xiàn),設(shè)M(x,y)為上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856263)
已知拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)與x軸交于點(diǎn)N,過(guò)點(diǎn)N作圓M:(x-2)2+y2=1的兩條切線(xiàn),切點(diǎn)為P、Q,且|PQ|=.
(Ⅰ)求拋物線(xiàn)的方程;
(Ⅱ)過(guò)拋物線(xiàn)的焦點(diǎn)F作斜率為k1的直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連接AM,BM并延長(zhǎng)分別交拋物線(xiàn)于C、D兩點(diǎn),設(shè)直線(xiàn)CD的斜率為k2,問(wèn)是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.
(1)求C;
(2)若c=,△ABC的面積為,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年1月,某國(guó)宣布成功進(jìn)行氫彈試驗(yàn)后,A,B,C,D四國(guó)領(lǐng)導(dǎo)人及聯(lián)合國(guó)主席紛紛表示譴責(zé),就此,某電視臺(tái)特別邀請(qǐng)一軍事專(zhuān)家對(duì)這一事件進(jìn)行評(píng)論,若該軍事專(zhuān)家計(jì)劃從A,B,C,D四國(guó)及聯(lián)合國(guó)主席這5個(gè)領(lǐng)導(dǎo)人中任選2人的發(fā)言態(tài)度進(jìn)行評(píng)論,那么,他評(píng)論的這2人中至少包括A、B一國(guó)領(lǐng)導(dǎo)人的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856288)
設(shè)函數(shù)f(x)=aln x-x,g(x)=aex-x,其中a為正實(shí)數(shù).
(Ⅰ)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(2,+∞)上有最小值,求a的取值范圍;
(Ⅱ)若函數(shù)f(x)與g(x)都沒(méi)有零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x+1|﹣|2x﹣3|,g(x)=|x+1|+|x﹣a|.
(l)求f(x)≥1的解集;
(2)若對(duì)任意的t∈R,s∈R,都有g(s)≥f(t).求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856331)
甲、乙兩家快餐店對(duì)某日7個(gè)時(shí)段的光顧的客人人數(shù)進(jìn)行統(tǒng)計(jì)并繪制莖葉圖如下圖所示(下面簡(jiǎn)稱(chēng)甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(Ⅰ)求a,b的值,并計(jì)算乙數(shù)據(jù)的方差;
(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機(jī)抽取兩個(gè),求至少有一個(gè)數(shù)據(jù)小于10的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com