設(shè)拋物線y2=8x上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是( )
(A)4 (B)6 (C)8 (D)12
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1)+g(1)=2,f(1)+g(-1)=4,則g(1)等于( )
(A)4 (B)3 (C)2 (D)1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”;當(dāng)a≥b時,a⊕b=a;當(dāng)a<b時,a⊕b=b2,函數(shù)f(x)=(1⊕x)·x(其中“·”仍為通常的乘法),則函數(shù)f(x)在[0,2]上的值域?yàn)? )
(A)[0,4] (B)[1,4] (C)[0,8] (D)[1,8]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:①方程f(f(x))=x一定沒有實(shí)數(shù)根;
②若a>0,則不等式f(f(x))>x對一切實(shí)數(shù)x都成立;
③若a<0,則必存在實(shí)數(shù)x0,使f(f(x0))>x0;
④若a+b+c=0,則不等式f(f(x))<x對一切實(shí)數(shù)都成立;
⑤函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒有交點(diǎn).
其中正確的結(jié)論是 (寫出所有正確結(jié)論的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線y2=2px(p>0),過其焦點(diǎn)且斜率為1的直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為( )
(A)x=1 (B)x=-1
(C)x=2 (D)x=-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為-,那么|PF|等于( )
(A)4 (B)8 (C)8 (D)16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線y2=4x的焦點(diǎn)為F,過F的直線與該拋物線相交于A(x1,y1)、B(x2,y2)兩點(diǎn),則+的最小值是( )
(A)4 (B)8 (C)12 (D)16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,已知C點(diǎn)在圓O直徑BE的延長線上,CA切圓O于A點(diǎn),∠ACB的平分線CD交AE于點(diǎn)F,交AB于點(diǎn)D.
(1)求∠ADF的度數(shù);
(2)若AB=AC,求AC∶BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com