設(shè)拋物線y2=8x上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是(  )

(A)4    (B)6    (C)8    (D)12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1)+g(1)=2,f(1)+g(-1)=4,則g(1)等于(  )

(A)4    (B)3    (C)2    (D)1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”;當(dāng)a≥b時,a⊕b=a;當(dāng)a<b時,a⊕b=b2,函數(shù)f(x)=(1⊕x)·x(其中“·”仍為通常的乘法),則函數(shù)f(x)在[0,2]上的值域?yàn)?  )

(A)[0,4]    (B)[1,4]    (C)[0,8]    (D)[1,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


若a,b,c成等比數(shù)列,則函數(shù)f(x)=ax2+bx+c的圖象與x軸交點(diǎn)的個數(shù)為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象和直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:①方程f(f(x))=x一定沒有實(shí)數(shù)根;

②若a>0,則不等式f(f(x))>x對一切實(shí)數(shù)x都成立;

③若a<0,則必存在實(shí)數(shù)x0,使f(f(x0))>x0;

④若a+b+c=0,則不等式f(f(x))<x對一切實(shí)數(shù)都成立;

⑤函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒有交點(diǎn).

其中正確的結(jié)論是    (寫出所有正確結(jié)論的編號). 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知拋物線y2=2px(p>0),過其焦點(diǎn)且斜率為1的直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為(  )

(A)x=1  (B)x=-1

(C)x=2  (D)x=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足,如果直線AF的斜率為-,那么|PF|等于(  )

(A)4 (B)8        (C)8 (D)16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知拋物線y2=4x的焦點(diǎn)為F,過F的直線與該拋物線相交于A(x1,y1)、B(x2,y2)兩點(diǎn),則+的最小值是(  )

(A)4    (B)8    (C)12   (D)16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖所示,已知C點(diǎn)在圓O直徑BE的延長線上,CA切圓O于A點(diǎn),∠ACB的平分線CD交AE于點(diǎn)F,交AB于點(diǎn)D.

(1)求∠ADF的度數(shù);

(2)若AB=AC,求AC∶BC.

查看答案和解析>>

同步練習(xí)冊答案