【題目】在數(shù)列{an}中,a1=1,a2= ,且an+1= (n≥2)
(1)求a3 , a4
(2)猜想an的表達(dá)式,并加以證明.

【答案】
(1)解:由數(shù)列{an},a1=1,a2= ,且an+1= (n≥2).

令n=2,則a3= = = ;

令n=3,則 =


(2)解:由(1)可猜想

下面利用數(shù)學(xué)歸納法加以證明:

①當(dāng)n=1,2,3,4時(shí),由(1)和已知經(jīng)驗(yàn)證可知:結(jié)論成立;

②假設(shè)當(dāng)n=k(k≥4)時(shí),結(jié)論也成立,即 ;

那么當(dāng)n=k+1時(shí),由題設(shè)與歸納假設(shè)可知: = =

即當(dāng)n=k+1時(shí),結(jié)論也成立.

綜上,對(duì)n∈N*, 成立.


【解析】
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解歸納推理的相關(guān)知識(shí),掌握根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理,以及對(duì)數(shù)學(xué)歸納法的定義的理解,了解數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=4x,點(diǎn)M(1,0)關(guān)于y軸的對(duì)稱點(diǎn)為N,直線l過點(diǎn)M交拋物線于A,B兩點(diǎn).
(1)證明:直線NA,NB的斜率互為相反數(shù);
(2)求△ANB面積的最小值;
(3)當(dāng)點(diǎn)M的坐標(biāo)為(m,0),(m>0且m≠1).根據(jù)(1)(2)推測(cè):△ABC面積的最小值是多少?(不必說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣ . (Ⅰ)若a=2,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)≥0對(duì)x∈(﹣1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的有 . (填上所有正確命題的序號(hào)) ①一質(zhì)點(diǎn)在直線上以速度v=3t2﹣2t﹣1(m/s)運(yùn)動(dòng),從時(shí)刻t=0(s)到t=3(s)時(shí)質(zhì)點(diǎn)運(yùn)動(dòng)的路程為15(m);
②若x∈(0,π),則sinx<x;
③若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
④已知函數(shù) ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若,且,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , 平面 .

(1)設(shè)點(diǎn)的中點(diǎn),求證: 平面

(2)線段上是否存在一點(diǎn),使得直線與平面所成的角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O點(diǎn)為坐標(biāo)原點(diǎn),且點(diǎn)A(1,0),B(0,1),C(2sinθ,cosθ)
(1)若 ,求tanθ的值;
(2)若 =1,求sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx+λcosωx,其圖象的一個(gè)對(duì)稱中心到最近的一條對(duì)稱軸的距離為 ,且在x= 處取得最大值.
(1)求λ的值.
(2)設(shè) 在區(qū)間 上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的傾斜角為且經(jīng)過點(diǎn),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為.

1)若直線與曲線有公共點(diǎn),求的取值范圍;

(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案