【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)峰種的投保人稱(chēng)為續(xù)保人,續(xù)保人的本年度的保費(fèi)與其上處度的出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:

(1) 求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;

(2) 若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)用,求其保費(fèi)比基本保費(fèi)高出60%的概率;

(3) 求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.

【答案】(1)0.55;(2) ;(3)1.23.

【解析】試題分析:

(1)利用概率的性質(zhì)可得一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率是0.55;

(2)結(jié)合條件概率計(jì)算公式可得一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)用,求其保費(fèi)比基本保費(fèi)高出60%的概率是;

(3)首項(xiàng)列出分布列,然后結(jié)合分布列計(jì)算可得續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值是1.23.

試題解析:

(1) 設(shè)表示事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,則事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于1,故

(2) 設(shè)表示事件:“一續(xù)保人本年度的保費(fèi)比基本保費(fèi)高出60%”,則事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于3,故

,故,因此所求的概率為

(3)記續(xù)保人本年度的保費(fèi)為,則的分布列為

0.30

0.15

0.20

0.20

0.10

0.05

,因此續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若,證明: 上存在唯一零點(diǎn);

(2)設(shè)函數(shù),( 表示中的較小值),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對(duì)一切x∈(0,+∞),都有l(wèi)nx> 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列條件,求圓的方程
(1)求經(jīng)過(guò)兩點(diǎn) ,且圓心在y軸上的圓的方程;
(2)圓的的半徑為1,圓心與點(diǎn)(1,0)關(guān)于 對(duì)稱(chēng)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若動(dòng)點(diǎn)A,B分別在直線(xiàn)l1:x+y-7=0和l2:x+y-5=0上移動(dòng),則AB的中點(diǎn)M到原點(diǎn)的距離的最小值為( )
A.3
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】私家車(chē)的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開(kāi)私家車(chē),盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車(chē)車(chē)尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)車(chē)輛限行的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

)完成被調(diào)查人員的頻率分布直方圖;

)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰有2人不贊成的概率;

)在()的條件下,再記選中的4人中不贊成車(chē)輛限行的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l與過(guò)點(diǎn)M(- , ),N( ,- )的直線(xiàn)垂直,則直線(xiàn)l的傾斜角是( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)方程為x2=2py(p>0),其焦點(diǎn)為F,點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)焦點(diǎn)F作斜率為k(k≠0)的直線(xiàn)與拋物線(xiàn)交于A(yíng),B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作拋物線(xiàn)的兩條切線(xiàn),設(shè)兩條切線(xiàn)交于點(diǎn)M.
(1)求 ;
(2)設(shè)直線(xiàn)MF與拋物線(xiàn)交于C,D兩點(diǎn),且四邊形ACBD的面積為 ,求直線(xiàn)AB的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點(diǎn), , .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線(xiàn)與直線(xiàn)交于點(diǎn),過(guò),交直線(xiàn)于點(diǎn),求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案