【題目】設(shè)函數(shù).

(1)若,證明: 上存在唯一零點(diǎn);

(2)設(shè)函數(shù),( 表示中的較小值),若,求的取值范圍.

【答案】(1)詳見解析;(2).

【解析】試題分析:(1)證明上存在唯一零點(diǎn),需從兩個(gè)方面進(jìn)行,一是單調(diào)性,確保至多一個(gè)零點(diǎn),二是零點(diǎn)存在定理,確保至少一個(gè)零點(diǎn).(2)即求函數(shù)的最大值,根據(jù)分段函數(shù)最大值為各段最大值的最大值,先求各段函數(shù)單調(diào)性,確定最大值,并比較可得函數(shù)最大值.

試題解析:

解:(1)函數(shù)的定義域?yàn)?/span>,因?yàn)?/span>,當(dāng)時(shí), ,而,所以存在零點(diǎn).因?yàn)?/span>,當(dāng)時(shí), ,所以,則上單調(diào)遞減,所以上存在唯一零點(diǎn).

(2)由(1)得, 上存在唯一零點(diǎn) 時(shí), 時(shí),

.當(dāng)時(shí),由于 時(shí), ,于是單調(diào)遞增,則,所以當(dāng)時(shí), .當(dāng)時(shí),因?yàn)?/span>, 時(shí), ,則單調(diào)遞增; 時(shí), ,則單調(diào)遞減,于是當(dāng)時(shí), ,所以函數(shù)的最大值為,所以的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)﹣ax在區(qū)間(0,3]上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(0,
B.( ,e)
C.(0, ]
D.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖:

求分?jǐn)?shù)在的頻率及全班人數(shù);

求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|mx|﹣|x﹣n|(0<n<1+m),若關(guān)于x的不等式f(x)<0的解集中的整數(shù)恰有3個(gè),則實(shí)數(shù)m的取值范圍為(
A.3<m<6
B.1<m<3
C.0<m<1
D.﹣1<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)“2015年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計(jì)公報(bào)” 中公布的數(shù)據(jù),從2011 年到2015 年,我國的

第三產(chǎn)業(yè)在中的比重如下:

年份

年份代碼

第三產(chǎn)業(yè)比重

(1)在所給坐標(biāo)系中作出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;

(2)建立第三產(chǎn)業(yè)在中的比重關(guān)于年份代碼的回歸方程;

(3)按照當(dāng)前的變化趨勢,預(yù)測2017 年我國第三產(chǎn)業(yè)在中的比重.

附注: 回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中,表示同一個(gè)函數(shù)的有
與y=x+1; ②y=x與y=|x|;
③y=|x|與; ④與y=x﹣1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列各組中兩個(gè)函數(shù)是否為同一函數(shù).
(1)f(x)=x2+2x﹣1,g(x)=t2+2t﹣1;
(2)f(x)= , g(x)=x+1;
(3)f(x)= , g(x)=;
(4)f(x)=|3﹣x|+1,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2lnx﹣a(x2﹣1),a∈R,若當(dāng)x≥1時(shí),f(x)≥0恒成立,則a的取值范圍是(
A.(﹣∞,﹣1]
B.(﹣∞,0]
C.(﹣∞,1]
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購買該險(xiǎn)峰種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費(fèi)與其上處度的出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:

(1) 求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;

(2) 若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)用,求其保費(fèi)比基本保費(fèi)高出60%的概率;

(3) 求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.

查看答案和解析>>

同步練習(xí)冊答案