1.對(duì)甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(m/s)的數(shù)據(jù)如表.
273830373531
33  2938342836
(1)畫出莖葉圖
(2)判斷選誰參加比賽更合適.

分析 (1)根據(jù)要求畫出莖葉圖即可;(2)分別求出甲和乙的平均數(shù)和方差,判斷即可.

解答 解:(1)畫莖葉圖,中間數(shù)為數(shù)據(jù)的十位數(shù)


(2)利用科學(xué)計(jì)算器:${\overline x_甲}$=33,${\overline x_乙}$=33;
且${s_甲}^2$=$\frac{47}{3}$>${s_乙}^2$=$\frac{37}{3}$,
綜合比較選乙參加比賽較為合適.

點(diǎn)評(píng) 本題考查了莖葉圖以及平均數(shù)和方差問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求與橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$有相同的焦點(diǎn),且兩準(zhǔn)線間的距離為$\frac{10}{3}$的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.判斷函數(shù) f(x)=x2 在R上的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a=({-1,2,-2})$與向量$\overrightarrow b=({4,0,3})$分別是直線l與直線m的方向向量,則直線l與直線m所成角的余弦值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若a,b,x,y∈R,則$\left\{\begin{array}{l}{x+y>a+b}\\{(x-a)(y-b)>0}\end{array}\right.$是$\left\{\begin{array}{l}{x>a}\\{y>b}\end{array}\right.$成立的必要不充分條件.(從“充分必要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|y=lg(x-1)},集合B={y|y=-x2+2},則A∩B等于( 。
A.(1,2)B.(1,2]C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列各式的值.
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-0.30-16${\;}^{-\frac{3}{4}}$; 
 (2)4${\;}^{lo{g}_{4}5}$-lne5+lg500+lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PB的中點(diǎn).
(Ⅰ)證明:AE⊥平面PAD;
(Ⅱ)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最
大角的正切值為$\sqrt{3}$,求二面角B-AF-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若z=1-i,則$\frac{2}{z}$=1+i.

查看答案和解析>>

同步練習(xí)冊(cè)答案