【題目】已知函數(shù),)和函數(shù),).問(wèn):(1)證明:上是增函數(shù);

(2)把函數(shù)寫成分段函數(shù)的形式,并畫出它們的圖象總結(jié)出的圖象是如何由的圖象得到的.請(qǐng)利用上面你的結(jié)論說(shuō)明:的圖象關(guān)于對(duì)稱;

(3)當(dāng),,時(shí),若對(duì)于任意的恒成立,的取值范圍.

【答案】(1)證明見(jiàn)解析;(2)理由見(jiàn)解析;(3).

【解析】

試題分析:(1)利用單調(diào)區(qū)間定義法,計(jì)算,所以函數(shù)為增函數(shù)(2)根據(jù)絕對(duì)值的意義,有.的圖象是由的圖象向右平移個(gè)單位得到的,因此,函數(shù),是由向右平移個(gè)單位得到,故圖像關(guān)于對(duì)稱(3)當(dāng),,時(shí),若等價(jià)于對(duì)于任意的恒成立,根據(jù)去絕對(duì)值,分類討論的取值范圍.

試題解析:

(1)在內(nèi)任取兩個(gè)實(shí)數(shù),,,

因?yàn)?/span>,,所以,又有,所以,

所以是增函數(shù)

(2)

的圖象是由的圖象向右平移1個(gè)單位得到的,

先考慮函數(shù),),

的定義域內(nèi)任取一個(gè)實(shí)數(shù),也在其定義域內(nèi),

因?yàn)?/span>所以函數(shù)是偶函數(shù),

即其圖象的對(duì)稱軸為,

由上述結(jié)論,的圖象是由的圖象向右平移個(gè)單位得到,

所以的圖象關(guān)于對(duì)稱

(3)由題意可知對(duì)于任意的恒成立

當(dāng)時(shí),不等式化為,

對(duì)于任意恒成立,

當(dāng)時(shí),,不等式化為,滿足題意

當(dāng)時(shí),由題意進(jìn)而對(duì)稱軸

所以,解得

結(jié)合以上兩種情況

當(dāng)時(shí),不等式

對(duì)于任意恒成立,

由題意進(jìn)而對(duì)稱軸

所以,,解得,

所以

綜上所述,的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,分別為棱的中點(diǎn).

(1)求二面角的平面角的余弦值;

(2)在線段上是否存在一點(diǎn),使得平面?若存在,確定點(diǎn)的位置并證明結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),證明:函數(shù)不是奇函數(shù);

(2)判斷函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;

(3)若是奇函數(shù),且時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】面對(duì)某種流感病毒,各國(guó)醫(yī)療科研機(jī)構(gòu)都在研究疫苗,現(xiàn)有A、BC三個(gè)獨(dú)立的研究機(jī)構(gòu)在一定的時(shí)期研制出疫苗的概率分別為求:

1他們能研制出疫苗的概率;

2至多有一個(gè)機(jī)構(gòu)研制出疫苗的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2-3,值域?yàn)閧1,5}的“孿生函數(shù)”共有( )
A.10個(gè)
B.9個(gè)
C.8個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn)恰為的零點(diǎn), 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),在平面直角坐標(biāo)系中,已知向,向,動(dòng)點(diǎn)的軌跡為.

1求軌跡的方程,并說(shuō)明該方程所表示曲線的形狀;

2已知,證明存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡恒有兩個(gè)交點(diǎn),且為坐標(biāo)原點(diǎn)),并求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓方程;

(2)設(shè)不過(guò)原點(diǎn)的直線,與該橢圓交于兩點(diǎn),直線的斜率依次為,滿足,試問(wèn):當(dāng)變化時(shí),是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費(fèi)用是每日92元,根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)5元,則自行車可以全部出租,若超過(guò)5元,則每超過(guò)1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金元只取整數(shù),用元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入-管理費(fèi)用)

(1)求函數(shù)的解析式及其定義域;

(2)當(dāng)租金定為多少時(shí),才能使一天的純收入最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案