【題目】已知函數(shù)f(x)=x2﹣2ax﹣3
(1)若函數(shù)在f(x)的單調(diào)遞減區(qū)間(﹣∞,2],求函數(shù)f(x)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在f(x)在單區(qū)間(﹣∞,2]上是單調(diào)遞減,求函數(shù)f(1)的最大值.
【答案】
(1)解:由函數(shù)f(x)的單調(diào)遞減區(qū)間(﹣∞,2],
∴a=2;
∴f(x)=(x﹣2)2﹣7,
∴函數(shù)f(x)在區(qū)間[3,5]上單調(diào)遞增,
∴f(x)的最大值在x=5處取到,f(5)=32﹣7=2
(2)解:由函數(shù)在f(x)在區(qū)間(﹣∞,2]上是單調(diào)遞減,得a≥2,
∴f(1)=﹣2﹣2a≤﹣6.
∴函數(shù)f(1)的最大值為﹣6
【解析】(1)由函數(shù)f(x)的單調(diào)遞減區(qū)間(﹣∞,2],可得a=2,可得函數(shù)f(x)在區(qū)間[3,5]上單調(diào)遞增,即可得出.(2)由函數(shù)在f(x)在區(qū)間(﹣∞,2]上是單調(diào)遞減,得a≥2,即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握當(dāng)時(shí),拋物線(xiàn)開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線(xiàn)開(kāi)口向下,函數(shù)在上遞增,在上遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三年級(jí)在高校自主招生期間,把學(xué)生的平時(shí)成績(jī)按“百分制”折算并排序,選出前300名學(xué)生,并對(duì)這300名學(xué)生按成績(jī)分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列. (Ⅰ)請(qǐng)?jiān)趫D中補(bǔ)全頻率分布直方圖;
(Ⅱ)若B大學(xué)決定在成績(jī)高的第4,5組中用
分層抽樣的方法抽取6名學(xué)生,并且分成2組,每組3人
進(jìn)行面試,求95分(包括95分)以上的同學(xué)被分在同一個(gè)小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2﹣2x﹣2ay+a2﹣24=0(a∈R)的圓心在直線(xiàn)2x﹣y=0上.
(1)求實(shí)數(shù)a的值;
(2)求圓C與直線(xiàn)l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)相交弦長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 滿(mǎn)足f(0)=0.
(1)求a,f(﹣2)的值,判斷函數(shù)f(x)的奇偶性并說(shuō)明理由;
(2)判斷該函數(shù)在R上的單調(diào)性(不要求證明),解不等式f(x2+x)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的不等式ax2﹣|x+1|+3a≥0的解集為(﹣∞,+∞),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a﹣ .
(1)求證:函數(shù)f(x)在R上為增函數(shù);
(2)當(dāng)函數(shù)f(x)為奇函數(shù)時(shí),求函數(shù)f(x)在[﹣1,2]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,定義在[﹣1,5]上的函數(shù)f(x)由一段線(xiàn)段和拋物線(xiàn)的一部分組成. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)指出函數(shù)f(x)的自變量x在什么范圍內(nèi)取值時(shí),函數(shù)值大于0,小于0或等于0(不需說(shuō)理由).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱ABC﹣A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是邊長(zhǎng)為2的等邊三角形,AA′=3,E、F分別在棱AA′,CC′上,且AE=C′F=2.
(1)求證:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一點(diǎn)M,使得C′M∥平面BEF,若存在,求 值,若不存在,說(shuō)明理由;
(3)求棱錐A′﹣BEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cosλθ,cos(10﹣λ)θ), =(sin(10﹣λ)θ,sinλθ),λ、θ∈R.
(1)求 + 的值;
(2)若 ⊥ ,求θ;
(3)若θ= ,求證: ∥ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com