【題目】如圖,三棱柱中,,,平面.

1)求證:;

2)若,直線與平面所成的角為,求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)首先由平面證得,根據(jù)四邊形是菱形證得,由此證得平面,進而證得.

2)首先根據(jù)“直線與平面所成的角為”得到.為坐標原點建立空間直角坐標系,通過平面的法向量和平面的法向量,計算出二面角的余弦值.

1)證明:因為平面,所以

因為,所以四邊形是菱形,所以,

因為,所以平面

所以.

2)因為與平面所成的角為,,

所以與平面所成的角為,

因為平面,

所以與平面所成的角為,

所以,

,則,,,

為坐標原點,分別以,,軸建立如圖空間直角坐標系,

,,,,,

因為,

所以,平面的一個法向量為,

設(shè)平面的一個法向量為,

,即,

,則,,

所以,

所以二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右焦點為,過的直線相交于兩點.

1)若,求的方程;

2)設(shè)過點軸的垂線交于另一點,若的外心,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)寫出的普通方程及的直角坐標方程;

(2)設(shè)點上,點上,求的最小值及此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校學生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時間的統(tǒng)計數(shù)據(jù)如下:

超過1小時

不超過1小時

20

8

12

m

1)求m,n;

2)能否有95%的把握認為該校學生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.×+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機拋擲100顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定橢圓C:(),稱圓心在原點O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點C上.

(1)求橢圓C的方程和其“衛(wèi)星圓”方程;

(2)點P是橢圓C的“衛(wèi)星圓”上的一個動點,過點P作直線,使得,與橢圓C都只有一個交點,且,分別交其“衛(wèi)星圓”于點M,N,證明:弦長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已如橢圓E)的離心率為,點E.

1)求E的方程:

2)斜率不為0的直線l經(jīng)過點,且與E交于P,Q兩點,試問:是否存在定點C,使得?若存在,求C的坐標:若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足,且為偶函數(shù),若內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案