【題目】有一種新型的洗衣液,去污速度特別快,已知每投放(,且)單位的洗衣液在一定量水的洗衣機中, 它在水中釋放的濃度(/)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中.若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中洗衣液濃度不低于/升時,它才能起到有效去污的作用.

(1)若只投放一次個單位的洗衣液,當(dāng)兩分鐘時水中洗衣液的濃度為/升,求的值;

(2)若只投放一次個單位的洗衣液,則有效去污時間可達幾分鐘?

(3)若第一次投放個單位的洗衣液,分鐘后再投放個單位的洗衣液,則在第分鐘時洗衣液是否還能起到有效去污的作用?請說明理由.

【答案】1;(2分鐘;(3)見詳解.

【解析】

1)由只投放一次個單位的洗衣液,當(dāng)兩分鐘時水中洗衣液的濃度為/升,根據(jù)已知可得,,代入可求出的值;(2)由只投放一次個單位的洗衣液,可得,分、兩種情況解不等式即可求解;(3)令,由題意求出此時的值并與比較大小即可.

1)因為,當(dāng)兩分鐘時水中洗衣液的濃度為/升時,可得,即,解得;(2)因為,所以,當(dāng)時,,將兩式聯(lián)立解之得;當(dāng)時,,將兩式聯(lián)立解之得,綜上可得,所以若只投放一次個單位的洗衣液,則有效去污時間可達分鐘;(3)當(dāng)時,由題意,因為,所以在第分鐘時洗衣液能起到有效去污的作用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過的直線與橢圓交于的兩點,且軸,若為橢圓上異于的動點且,則該橢圓的離心率為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,若直線的極坐標方程為,曲線的參數(shù)方程是為參數(shù)).

1)求直線的直角坐標方程和曲線的普通方程;

2)設(shè)點的直角坐標為,過的直線與直線平行,且與曲線交于、兩點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組為了研究晝夜溫差對一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實驗室每天每100顆種子的發(fā)芽數(shù),得到如下資料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

9

10

11

8

12

發(fā)芽數(shù)(顆)

38

30

24

41

17

利用散點圖,可知線性相關(guān)。

(1)求出關(guān)于的線性回歸方程,若4月6日星夜溫差,請根據(jù)你求得的線性同歸方程預(yù)測4月6日這一天實驗室每100顆種子中發(fā)芽顆數(shù);

(2)若從4月1日 4月5日的五組實驗數(shù)據(jù)中選取2組數(shù)據(jù),求這兩組恰好是不相鄰兩天數(shù)據(jù)的概率.

(公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A. 甲、乙二人比賽,甲勝的概率為則比賽5場,甲勝3

B. 某醫(yī)院治療一種疾病的治愈率為10%,前9個病人沒有治愈,則第10個病人一定治愈

C. 隨機試驗的頻率與概率相等

D. 天氣預(yù)報中,預(yù)報明天降水概率為90%,是指降水的可能性是90%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點的距離比到定直線的距離小1.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點.設(shè)線段 的中點分別為,求證:直線恒過一個定點;

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】麻團又叫煎堆,呈球形華北地區(qū)稱麻團,是一種古老的中華傳統(tǒng)特色油炸面食,寓意團圓。制作時以糯米粉團炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒有。一個長方體形狀的紙盒中恰好放入4個球形的麻團,它們彼此相切,同時與長方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長方體紙盒的表面積為576 則一個麻團的體積為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點的軌道運行.點是平衡點,位于地月連線的延長線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點到月球的距離為r,根據(jù)牛頓運動定律和萬有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)處的切線與直線平行,求實數(shù)的值;

(2)試討論函數(shù)在區(qū)間上最大值;

(3)若時,函數(shù)恰有兩個零點,求證:.

查看答案和解析>>

同步練習(xí)冊答案