【題目】已知動點(diǎn)到定點(diǎn)的距離比到定直線的距離小1.

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn).設(shè)線段 的中點(diǎn)分別為,求證:直線恒過一個定點(diǎn);

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

【答案】(1) (2)過定點(diǎn),(3)4

【解析】試題分析:(Ⅰ)先借助拋物線定義確定曲線的形狀是拋物線,再確定參數(shù),進(jìn)而求出;(Ⅱ)先依據(jù)(Ⅰ)的結(jié)論分別建立的方程,再分別與拋物線聯(lián)立方程組,求出弦中點(diǎn)為的坐標(biāo),最后借助斜率的變化確定直線經(jīng)過定點(diǎn);(Ⅲ)在(Ⅱ)前提條件下,先求出,然后建立面積關(guān)于變量的函數(shù),再運(yùn)用基本不等式求其最小值:

解:(Ⅰ)由題意可知:動點(diǎn)到定點(diǎn)的距離等于到定直線的距離.根據(jù)拋物線的定義可知,點(diǎn)的軌跡是拋物線.

,∴拋物線方程為:

(Ⅱ)設(shè)兩點(diǎn)坐標(biāo)分別為,則點(diǎn)的坐標(biāo)為.

由題意可設(shè)直線的方程為.

,得.

.

因為直線與曲線兩點(diǎn),所以.

所以點(diǎn)的坐標(biāo)為.

由題知,直線的斜率為,同理可得點(diǎn)的坐標(biāo)為.

當(dāng)時,有,此時直線的斜率.

所以,直線的方程為,整理得.

于是,直線恒過定點(diǎn);

當(dāng)時,直線的方程為,也過點(diǎn).

綜上所述,直線恒過定點(diǎn).

(Ⅲ)可求得.所以面積.

當(dāng)且僅當(dāng)時,“ ”成立,所以面積的最小值為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱臺被過點(diǎn)的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長為2的菱形,平面,.

(Ⅰ)求證:平面平面;

(Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)上的最大值為1,求實數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上的兩個點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點(diǎn)在直線的下方.

)求k的取值范圍;

)設(shè)CW上一點(diǎn),且,過兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)到定點(diǎn)的距離比到定直線的距離小1.

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn).設(shè)線段 的中點(diǎn)分別為,求證:直線恒過一個定點(diǎn);

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為離心率為,兩準(zhǔn)線之間的距離為8,點(diǎn)在橢圓上,且位于第一象限,過點(diǎn)作直線的垂線,過點(diǎn)作直線的垂線

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線的交點(diǎn)在橢圓,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點(diǎn),求;

(2)設(shè)圓軸的負(fù)半軸的交點(diǎn)為,過點(diǎn)作兩條斜率分別為的直線交圓兩點(diǎn),且,試證明直線恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=axlnx﹣x+l (aR),且f(x)0.

(I)求a;

II)求證:當(dāng),nN*時,

查看答案和解析>>

同步練習(xí)冊答案