【題目】如圖,AB是⊙O的直徑,C、F是⊙O上的兩點(diǎn),OC⊥AB,過(guò)點(diǎn)F作⊙O的切線FD交AB的延長(zhǎng)線于點(diǎn)D.連接CF交AB于點(diǎn)E.

(1)求證:DE2=DBDA;

(2)若DB=2,DF=4,試求CE的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)

【解析】

試題分析:(1)由切割線定理有,因此只要證明,也即只要證明,再考慮它們的余角是否相等即得;(2)由(1)可得的長(zhǎng),從而有圓的半徑,再得,最后由勾股定理可得

試題解析:(1)證明:連接OF.

因?yàn)镈F切⊙O于F,所以∠OFD=90°.

所以∠OFC+∠CFD=90°.

因?yàn)镃O⊥AB于O,所以∠OCF+∠CEO=90°.

所以∠CFD=∠CEO=∠DEF,所以DF=DE.

因?yàn)镈F是⊙O的切線,所以DF2=DBDA.

所以DE2=DBDA.

(2)解:DF2=DBDA,DB=2,DF=4.

DA=8,從而AB=6,則

又由(1)可知,DE=DF=4,BE=2,OE=1.

從而在中,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)對(duì)任意,總有,且當(dāng)時(shí),,.

(1)求證:上的減函數(shù);

(2)求上的最大值和最小值;

(3)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=2x5+ax3+bx-3,若f(-4)=10,則f(4)=( )
A.16
B.-10
C.10
D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具廠生產(chǎn)一種課桌,每張課桌的成本為50元,出廠單價(jià)為80元,該廠為鼓勵(lì)銷(xiāo)售商多訂購(gòu),決定一次訂購(gòu)量超過(guò)100張時(shí),每超過(guò)一張,這批訂購(gòu)的全部課桌出廠單價(jià)降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)量不會(huì)超過(guò)1000張.

)設(shè)一次訂購(gòu)量為張,課桌的實(shí)際出廠單價(jià)為元,求關(guān)于的函數(shù)關(guān)系式;

)當(dāng)一次性訂購(gòu)量為多少時(shí),該家具廠這次銷(xiāo)售課桌所獲得的利潤(rùn)最大?其最大利潤(rùn)是多少元?(該家具廠出售一張課桌的利潤(rùn)=實(shí)際出廠單價(jià)-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中真命題的個(gè)數(shù)為( )
①平行于同一平面的兩直線平形;②平行于同一平面的兩個(gè)平面平行;
③垂直于同一平面的兩直線平行;④垂直于同一平面的兩平面垂直;
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,點(diǎn)在底面上的射影為線段的中點(diǎn)

(1)若為棱的中點(diǎn),求證:平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù)已知的最小正周期為,且

1的值;

2的單調(diào)遞增區(qū)間;

3求函數(shù)在區(qū)間上的最小值和最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,的中點(diǎn),.

1)已知,,求證:平面;

2)已知分別是的中點(diǎn),求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

的定義域和值域均是,求實(shí)數(shù)的值;

在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;

,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案