【題目】已知函數(shù)

的定義域和值域均是,求實數(shù)的值;

在區(qū)間上是減函數(shù),且對任意的,都有,求實數(shù)的取值范圍;

,且對任意的,都存在,使得成立,求實數(shù)的取值范圍.

【答案】2

【解析】

試題分析:I由函數(shù)fx的解析式,可得函數(shù)在-,a]上單調(diào)遞減,進而得到fx在[1,a]上單調(diào)遞減,則,由此構(gòu)造關(guān)于a的方程組,解之可得答案.fx在區(qū)間-2]上是減函數(shù),則-,2]-a],進而結(jié)合x[1,a+1]時,fxmax=f1,構(gòu)造關(guān)于a的不等式,解不等式,可得答案.III由函數(shù)gx[0,1]上遞增,fx[0,1]上遞減,可分別求出兩個函數(shù)的值域,若對任意的x[0,1],都存在x0[01],使得fx0=gx成立;則兩個函數(shù)的值域滿足:[1,3][6-2a,5],進而可得答案

試題解析:

上單調(diào)遞減,又上單調(diào)遞減,

, ,

在區(qū)間上是減函數(shù),

,

時,

對任意的,都有

, ,

上遞增,上遞減,

當(dāng)時,,

對任意的,都存在,使得成立;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C、F是⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D.連接CF交AB于點E.

(1)求證:DE2=DBDA;

(2)若DB=2,DF=4,試求CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為2萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本固定成本+生產(chǎn)成本),銷售收入,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題

(1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

(2)甲廠生產(chǎn)多少臺新產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,圓是以的中點為圓心,為半徑的圓.

(1)若圓的切線在軸和軸上截距相等,求切線方程;

(2)若是圓外一點,從向圓引切線,為切點,為坐標(biāo)原點,,求使最小的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)B={1,2},A={x|xB},則A與B的關(guān)系是( )
A.AB
B.BA
C.A∈B
D.B∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,正確的個數(shù)是( )
(1){0}∈{0,1,2};(2){0,1,2}{2,1,0};(3) {0,1,2}.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國人口已經(jīng)出現(xiàn)老齡化與少子化并存的結(jié)構(gòu)特征,測算顯示中國是世界上人口老齡化速度最快的家之一,再不實施放開二胎新政策,整個社會將會出現(xiàn)一系列的問題,若某地區(qū)2015年人口總數(shù)為萬,實施放開二胎新政策后專家估計人口總數(shù)將發(fā)生如下變化:從2016年開始到2025年每年人口比上年增加萬人,從2026年開始到2035年每年人口為上一年的.

(1)求實施新政策后第年的人口總數(shù)的表達式(注:2016年為第一年;

(2)若新政策實施后的2016年到2035年人口平均值超過萬,則調(diào)政策,否則繼續(xù)實施,問到2035年后要調(diào)政策?(說明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)當(dāng)時,求證:;

(2)當(dāng)函數(shù)與函數(shù)有且僅有一個交點,求的值;

(3)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間將10名技工平均分為甲,乙兩組加工某種零件,在單位時間內(nèi)每個技工加工零件若干,其中合格零件的個數(shù)如下表:

1號

2號

3號

4號

5號

甲組

4

5

7

9

10

乙組

5

6

7

8

9

(1)分別求出甲,乙兩組技工在單位時間內(nèi)完成合格零件的平均數(shù)及方差,并由此判斷哪組工人的技術(shù)水平更好;

(2)質(zhì)監(jiān)部門從該車間甲,乙兩組中各隨機抽取1名技工,對其加工的零件進行檢測,若兩人完成合格零件個數(shù)之和超過12件,則稱該車間質(zhì)量合格,否則不合格.求該車間質(zhì)量不合格的概率.

查看答案和解析>>

同步練習(xí)冊答案