【題目】選修4-4:坐標系與參數(shù)方程

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合.若曲線的參數(shù)方程為為參數(shù)),直線的極坐標方程為.

(1)將曲線的參數(shù)方程化為極坐標方程;

(2)由直線上一點向曲線引切線,求切線長的最小值.

【答案】(1;(2.

【解析】試題分析:(1)圓的直角坐標方程為,根據(jù),求得圓的極坐標方程為;(2)先求得直線的直角坐標方程為,設直線上點,切點,圓心,則有,當最小時,有最小,而,

所以.

試題解析:

1)圓的直角坐標方程為,

的極坐標方程為...................................5

2)由直線的極坐標方程變形可得

,

的直角坐標方程為,

設直線上點,切點,圓心,

則有

最小時,有最小,

,

所以

即切線長的最小值為2.......................................10

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】解關于x的不等式:
(1) >1;
(2)x2﹣ax﹣2a2<0 (a為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)

如圖,在四棱錐,平面,,,,,.

(I)求異面直線所成角的余弦值

(II)求證:平面;

(II)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示, 為圓的直徑,點 在圓上, ,矩形所在的平面和圓所在的平面互相垂直,且, , .

(1)求證: 平面;

(2)設的中點為,求三棱錐的體積與多面體的體積之比的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一壁畫,最高點A處離地面AO=4m,最低點B處離地面BO=2m,觀賞它的C點在過墻角O點與地面成30°角的射線上.

(1)設點C到墻的距離為x,當x= m時,求tanθ的值;
(2)問C點離墻多遠時,視角θ最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】連續(xù)2次拋擲﹣枚骰子(六個面上分別標有數(shù)字1,2,3,4,5,6).則事件“兩次向上的數(shù)字之和等于7”發(fā)生的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項均為正數(shù)的等比數(shù)列滿足 .

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案