【題目】選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合.若曲線的參數(shù)方程為(為參數(shù)),直線的極坐標方程為.
(1)將曲線的參數(shù)方程化為極坐標方程;
(2)由直線上一點向曲線引切線,求切線長的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)
如圖,在四棱錐中,平面,,,,,,.
(I)求異面直線與所成角的余弦值;
(II)求證:平面;
(II)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示, 為圓的直徑,點, 在圓上, ,矩形所在的平面和圓所在的平面互相垂直,且, , .
(1)求證: 平面;
(2)設的中點為,求三棱錐的體積與多面體的體積之比的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一壁畫,最高點A處離地面AO=4m,最低點B處離地面BO=2m,觀賞它的C點在過墻角O點與地面成30°角的射線上.
(1)設點C到墻的距離為x,當x= m時,求tanθ的值;
(2)問C點離墻多遠時,視角θ最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】連續(xù)2次拋擲﹣枚骰子(六個面上分別標有數(shù)字1,2,3,4,5,6).則事件“兩次向上的數(shù)字之和等于7”發(fā)生的概率為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com