7.在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,a2-c2=2b且sinAcosC=3cosAsinC,求b.

分析 利用余弦定理、正弦定理化簡(jiǎn)sinAcosC=3cosAsinC,結(jié)合a2-c2=2b,聯(lián)立即可求b的值.

解答 解:∵sinAcosC=3cosAsinC,
∴由正弦定理,余弦定理可得:a×$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=3c×$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,
∴整理可得:2c2=2a2-b2
∵a2-c2=2b,
∴b2=4b,
∵b≠0
∴b=4.

點(diǎn)評(píng) 本題考查余弦定理、正弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.拋物線(xiàn)頂點(diǎn)在原點(diǎn),以x軸為對(duì)稱(chēng)軸,過(guò)焦點(diǎn)且垂直于對(duì)稱(chēng)軸的弦長(zhǎng)為8,求拋物線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①b<0,c>0;②a+b+c<0;③方程的兩根之和大于0;④a-b+c<0,其中正確的個(gè)數(shù)是( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)(a,b)在圓C:x2+y2=r2(r≠0)的外部,則ax+by=r2與圓C的位置關(guān)系是( 。
A.相切B.相離C.內(nèi)含D.相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.北京某小學(xué)組織6個(gè)年級(jí)的學(xué)生外出參觀包括甲博物館在內(nèi)的6個(gè)博物館,每個(gè)年級(jí)任選一個(gè)博物館參觀,則有
且只有兩個(gè)年級(jí)選擇甲博物館的方案有(  )
A.6 2×A 5 4B.6 2×5 4C.6 2×A 5 4D.6 2×5 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個(gè)整數(shù),則實(shí)數(shù)k的取值范圍為( 。
A.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$)B.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$]C.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1]D.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題中,真命題是( 。
A.所有的素?cái)?shù)是奇數(shù)B.?x∈R,x+$\frac{1}{x}$≥2
C.?x∈R,x2-2x-3=0D.存在兩個(gè)相交平面垂直于同一直線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,a=2,cos C=-$\frac{1}{4}$,3sin A=2sin B,則c=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=log2(1+x)+alog2(1-x)(a∈R)的圖象關(guān)于y軸對(duì)稱(chēng).
(1)求函數(shù)f(x)的定義域;
(2)求a的值;
(3)若函數(shù)g(x)=x-2f(x)-2t有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案