【題目】
對于各項均為整數(shù)的數(shù)列,如果(=1,2,3,…)為完全平方數(shù),則稱數(shù)
列具有“性質(zhì)”.
不論數(shù)列是否具有“性質(zhì)”,如果存在與不是同一數(shù)列的,且同
時滿足下面兩個條件:①是的一個排列;②數(shù)列具有“性質(zhì)”,則稱數(shù)列具有“變換性質(zhì)”.
(I)設(shè)數(shù)列的前項和,證明數(shù)列具有“性質(zhì)”;
(II)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換性質(zhì)”,具有此性質(zhì)的數(shù)列請寫出相應(yīng)的數(shù)列,不具此性質(zhì)的說明理由;
(III)對于有限項數(shù)列:1,2,3,…,,某人已經(jīng)驗證當時,
數(shù)列具有“變換性質(zhì)”,試證明:當”時,數(shù)列也具有“變換性質(zhì)”.
【答案】(I)證明見解析.(II)數(shù)列1,2,3,4,5具有“變換P性質(zhì)”,數(shù)列為3,2,1,5,4.數(shù)列1,2,3,…,11不具有“變換P性質(zhì)”理由見詳解;(III)證明見解析.
【解析】
(I)當時,
又.
所以是完全平方數(shù),
數(shù)列具有“P性質(zhì)”
(II)數(shù)列1,2,3,4,5具有“變換P性質(zhì)”,
數(shù)列為3,2,1,5,4
數(shù)列1,2,3,…,11不具有“變換P性質(zhì)”
因為11,4都只有5的和才能構(gòu)成完全平方數(shù)
所以數(shù)列1,2,3,…,11不具有“變換P性質(zhì)”
(III)設(shè)
注意到
令
由于,
所以
又
所以
即
因為當時,數(shù)列具有“變換P性質(zhì)”
所以1,2,…,4m+4-j-1可以排列成
使得都是平方數(shù)
另外,可以按相反順序排列,
即排列為
使得
所以1,2,可以排列成
滿足都是平方數(shù).
即當時,數(shù)列A也具有“變換P性質(zhì)”
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點,點是平面內(nèi)的動點,且,記的軌跡是
(1)求曲線的方程;
(2)過點引直線交曲線于兩點,設(shè),點關(guān)于軸的對稱點為,證明直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了進一步推動全市學(xué)習(xí)型黨組織、學(xué)習(xí)型社會建設(shè),某市組織開展“學(xué)習(xí)強國”知識測試,每人測試文化、經(jīng)濟兩個項目,每個項目滿分均為60分.從全體測試人員中隨機抽取了100人,分別統(tǒng)計他們文化、經(jīng)濟兩個項目的測試成績,得到文化項目測試成績的頻數(shù)分布表和經(jīng)濟項目測試成績的頻率分布直方圖如下:
經(jīng)濟項目測試成績頻率分布直方圖
分數(shù)區(qū)間 | 頻數(shù) |
2 | |
3 | |
5 | |
15 | |
40 | |
35 |
文化項目測試成績頻數(shù)分布表
將測試人員的成績劃分為三個等級如下:分數(shù)在區(qū)間內(nèi)為一般,分數(shù)在區(qū)間內(nèi)為良好,分數(shù)在區(qū)間內(nèi)為優(yōu)秀.
(1)在抽取的100人中,經(jīng)濟項目等級為優(yōu)秀的測試人員中女生有14人,經(jīng)濟項目等級為一般或良好的測試人員中女生有34人.填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認為“經(jīng)濟項目等級為優(yōu)秀”與性別有關(guān)?
優(yōu)秀 | 一般或良好 | 合計 | |
男生數(shù) | |||
女生數(shù) | |||
合計 |
(2)用這100人的樣本估計總體,假設(shè)這兩個項目的測試成績相互獨立.
(i)從該市測試人員中隨機抽取1人,估計其“文化項目等級高于經(jīng)濟項目等級”的概率.
(ii)對該市文化項目、經(jīng)濟項目的學(xué)習(xí)成績進行評價.
附:
0.150 | 0.050 | 0.010 | |
2.072 | 3.841 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓上一點,為橢圓長軸上一點,為坐標原點,有下列結(jié)論:①存在點,,使得為等邊三角形;②不存在點,,使得為等邊三角形;③存在點,,使得;④不存在點,,使得.其中,所有正確結(jié)論的序號是( )
A.①④B.①③C.②④D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】、兩個班共有65名學(xué)生,為調(diào)查他們的引體向上鍛煉情況,通過分層抽樣獲得了部分學(xué)生引體向上的測試數(shù)據(jù)(單位:個),用莖葉圖記錄如下:
(1)試估計班的學(xué)生人數(shù);
(2)從班和班抽出的學(xué)生中,各隨機選取一人,班選出的人記為甲,班選出的人記為乙,假設(shè)所有學(xué)生的測試相對獨立,比較甲、乙兩人的測試數(shù)據(jù)得到隨機變量.規(guī)定:當甲的測試數(shù)據(jù)比乙的測試數(shù)據(jù)低時,記;當甲的測試數(shù)據(jù)與乙的測試數(shù)據(jù)相等時,記;當甲的測試數(shù)據(jù)比乙的測試數(shù)據(jù)高時,記.求隨機變量的分布列及數(shù)學(xué)期望.
(3)再從、兩個班中各隨機抽取一名學(xué)生,他們引體向上的測試數(shù)據(jù)分別是10,8(單位:個),這2個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記,表格中數(shù)據(jù)的平均數(shù)記為,試判斷和的大小.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)y的差,若差值的絕對值都不超過1,則稱所求方程是“恰當回歸方程”.
(1)從這6組數(shù)據(jù)中隨機選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時間相鄰的概率;
(2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當回歸方程”.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在長方體中,,點E是棱上的一個動點,若平面交棱于點,給出下列命題:
①四棱錐的體積恒為定值;
②存在點,使得平面;
③對于棱上任意一點,在棱上均有相應(yīng)的點,使得平面;
④存在唯一的點,使得截面四邊形的周長取得最小值.
其中真命題的是____________.(填寫所有正確答案的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠對一批產(chǎn)品進行了抽樣檢測.如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36.
(1)求樣本容量及樣本中凈重大于或等于96克并且小于102克的產(chǎn)品的個數(shù);
(2)已知這批產(chǎn)品中每個產(chǎn)品的利潤y(單位:元)與產(chǎn)品凈重x(單位:克)的關(guān)系式為求這批產(chǎn)品平均每個的利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知兩點,,動點P在y軸上的攝影是H,且,
(1)求動點P的軌跡方程;
(2)設(shè)直線,的兩個斜率存在,分別記為,,若,求點P的坐標;
(3)若經(jīng)過點的直線l與動點P的軌跡有兩個交點為T、Q,當時,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com