已知sin(-α)=
2
2
3
,α∈(-
π
2
,0),則tanα等于(  )
A、
2
4
B、-
2
4
C、2
2
D、-2
2
考點:同角三角函數(shù)基本關(guān)系的運用,運用誘導(dǎo)公式化簡求值
專題:計算題,三角函數(shù)的求值
分析:由已知先求sinα,即可求得cosα,tanα的值.
解答: 解:∵sin(-α)=
2
2
3
,α∈(-
π
2
,0),
∴sinα=-
2
2
3

∴cosα=
1
3
,
∴tanα=
sinα
cosα
=-2
2

故選:D.
點評:本題主要考察了誘導(dǎo)公式,同角三角函數(shù)關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=ln[(m2-1)]x2-(1-m)x+1]的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個函數(shù)中,既是奇函數(shù)又在定義域上單調(diào)遞增的是( �。�
A、y=x+1
B、y=x3
C、y=tanx
D、y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
3-bi
1-2i
(i是虛數(shù)單位)的實部和虛部相等,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1.
(1)在拋物線C1上取點M,C2的圓周取一點N,求|MN|的最小值;
(2)設(shè)P(x0,y0)(2≤x0≤4)為拋物線C1上的動點,過P作圓C2的兩條切線,交拋物線C1于A,B兩點.求AB的中點D的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點M是等腰直角三角形ABC的底邊AB的中點,P是直線AB上任意一點,PE⊥AC,E為垂足,PF⊥BC,F(xiàn)為垂足.求證:(1)|ME|=|MF|;  
(2)ME⊥MF.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�