【題目】某學(xué)校為了解高三年級學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間[2,4]的有8人.

(1)求直方圖中a的值及甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間(10,12]的人數(shù);
(2)從甲、乙兩個班每天平均學(xué)習(xí)時間大于10個小時的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

【答案】
(1)

解:由直方圖知,(0.150+0.125+0.100+0.0875+a)×2=1,

解得a=0.0375,

因為甲班學(xué)習(xí)時間在區(qū)間[2,4]的有8人,

所以甲班的學(xué)生人數(shù)為 ,

所以甲、乙兩班人數(shù)均為40人.

所以甲班學(xué)習(xí)時間在區(qū)間(10,12]的人數(shù)為40×0.0375×2=3(人).


(2)

解:乙班學(xué)習(xí)時間在區(qū)間(10,12]的人數(shù)為40×0.05×2=4(人).

由(1)知甲班學(xué)習(xí)時間在區(qū)間(10,12]的人數(shù)為3人,

在兩班中學(xué)習(xí)時間大于10小時的同學(xué)共7人,

ξ的所有可能取值為0,1,2,3.

,

,

,

所以隨機(jī)變量ξ的分布列為:

ξ

0

1

2

3

P


【解析】(1)由直方圖能求出a的值及甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間(10,12]的人數(shù).(2)由已知得ξ的所有可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.
【考點(diǎn)精析】本題主要考查了頻率分布直方圖和離散型隨機(jī)變量及其分布列的相關(guān)知識點(diǎn),需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x+1)ln xa(x-1).

(1)當(dāng)a=4時,求曲線yf(x)在(1,f(1))處的切線方程;

(2)若當(dāng)x∈(1,+∞)時,f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù)),點(diǎn)A的極坐標(biāo)為( , ),設(shè)直線l與圓C交于點(diǎn)P、Q.
(1)寫出圓C的直角坐標(biāo)方程;
(2)求|AP||AQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點(diǎn),且CD=DE= ,CE=2EB=2

(1)證明:DE⊥平面PCD
(2)求二面角B﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,類比三角形中位線定理“如果EF是三角形的中位線,則EF AB.”,在空間四面體(三棱錐)P﹣ABC中,“如果 , 則”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,B是鈍角,且 a=2bsinA.
(1)求B的大。
(2)若△ABC的面積為 ,且b=7,求a+c的值;
(3)若b=6,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=4x3+ax2+bx+5在x= 與x=﹣1時有極值.
(1)寫出函數(shù)的解析式;
(2)指出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 中點(diǎn),

)求證: 平面;

)若,求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Γ: + =1(a>b>0)的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個面積為2的等腰直角三角形,O為坐標(biāo)原點(diǎn):

(1)求橢圓Г的方程:
(2)設(shè)點(diǎn)A在橢圓Г上,點(diǎn)B在直線y=2上,且OA⊥OB,求證: + 為定值:
(3)設(shè)點(diǎn)C在Γ上運(yùn)動,OC⊥OD,且點(diǎn)O到直線CD距離為常數(shù)d(0<d<2),求動點(diǎn)D的軌跡方程:

查看答案和解析>>

同步練習(xí)冊答案