【題目】已知函數(shù),命題,;命題.

(1)為真命題,求的取值范圍;

(2)為真命題,求的取值范圍;

(3)為假命題,為假命題,求的取值范圍.

【答案】(1)(2)(3)

【解析】分析:(1)當(dāng)為真命題,即,使得成立,故只需即可.(2)當(dāng)為真命題,即成立,故.(3)分析題意得到為真命題,為假命題,由此可得關(guān)于的不等式組,解不等式組可得所求

詳解的圖象為開口向上,對(duì)稱軸為的拋物線,

上單調(diào)遞減,在上單調(diào)遞增,

,

,

(1)若為真命題,即使得成立,

∴實(shí)數(shù)的取值范圍為

(2)若為真命題,即恒成立,

.

解得

∴實(shí)數(shù)的取值范圍為

(3)為假命題,為假命題

為真命題,為假命題.

,解得

∴實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知k∈R,直線l1:x+ky=0過(guò)定點(diǎn)P,直線l2:kx﹣y﹣2k+2=0過(guò)定點(diǎn)Q,兩直線交于點(diǎn)M,則|MP|+|MQ|的最大值是(
A.2
B.4
C.4
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn , 且S2=6,S4=30,n∈N* , 數(shù)列{bn}滿足bnbn+1=an , b1=1
(1)求an , bn;
(2)求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 平面BC的中點(diǎn).

求證: ;

求異面直線AE所成的角的大;

G中點(diǎn),求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù)),且曲線在點(diǎn)處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是以AB為直徑的圓O上異于A,B的點(diǎn),平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線為直線l.
(Ⅰ)求證:直線l⊥平面PAC;
(Ⅱ)直線l上是否存在點(diǎn)Q,使直線PQ分別與平面AEF、直線EF所成的角互余?若存在,求出|AQ|的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|m﹣1≤x≤m+1,x∈R,m∈R}

(1)若A∩B=[1,3],求實(shí)數(shù)m的值;

(2)若ARB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左右焦點(diǎn)分別為, ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.

(1)求橢圓的方程;

(2)設(shè)直線 與橢圓相交于不同的兩點(diǎn), 是線段的中點(diǎn).若經(jīng)過(guò)點(diǎn)的直線與直線垂直于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓以原點(diǎn)為圓心,且圓與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)若直線與圓交于、兩點(diǎn),分別過(guò)、兩點(diǎn)作直線的垂線,交軸于、兩點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案