【題目】已知橢圓 的左右焦點分別為, ,左頂點為,上頂點為, 的面積為.

(1)求橢圓的方程;

(2)設(shè)直線 與橢圓相交于不同的兩點, , 是線段的中點.若經(jīng)過點的直線與直線垂直于點,求的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)由題意可知.,由,可求得橢圓方程。(2)分討論,當時,因為兩直線互相垂直,所以直線的方程為, 即點到直線的距離, 即點到直線的距離,用點到直線的距離公式計算,結(jié)合韋達定理,把長度表示為k的形式,所以表示為k的函數(shù),即可求范圍。

試題解析:(1)由已知,有.

,∴.

,∴.

∴橢圓的方程為.

(2)①當時,點即為坐標原點,點即為點,則, .

.

②當時,直線的方程為.

則直線的方程為,即.

設(shè), .

聯(lián)立方程,消去,得 .

此時.

, .∴.

即點到直線的距離,

.

即點到直線的距離,∴.

.

,則.

.

時,有.

綜上,可知的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,面積為的正方形中有一個不規(guī)則的圖形,可按下面方法估計的面積:在正方形中隨機投擲個點,若個點中有個點落入中,則的面積的估計值為,假設(shè)正方形的邊長為2, 的面積為1,并向正方形中隨機投擲個點,以表示落入中的點的數(shù)目.

I)求的均值;

II)求用以上方法估計的面積時, 的面積的估計值與實際值之差在區(qū)間內(nèi)的概率.

附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),命題,;命題.

(1)為真命題,求的取值范圍;

(2)為真命題,求的取值范圍;

(3)為假命題,為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】日前,揚州下達了2018年城市建設(shè)和環(huán)境提升重點工程項目計劃,其中將對一塊以O為圓心,R(R為常數(shù),單位:米)為半徑的半圓形荒地進行治理改造,如圖所示,△OBD區(qū)域用于兒童樂園出租,弓形BCD區(qū)域(陰影部分)種植草坪,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55元,兒童樂園出租的利潤是每平方米95元.

(1)設(shè)∠BOD=θ(單位:弧度),用θ表示弓形BCD的面積S=f(θ);

(2)如果市規(guī)劃局邀請你規(guī)劃這塊土地,如何設(shè)計∠BOD的大小才能使總利潤最大?并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《城市規(guī)劃管理意見》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設(shè)封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開”,這個消息在網(wǎng)上一石激起千層浪,各種說法不一而足.某網(wǎng)站為了解居民對“開放小區(qū)”認同與否,從歲的人群中隨機抽取了人進行問卷調(diào)查,并且做出了各個年齡段的頻率分布直方圖(部分)如圖所示,同時對人對這“開放小區(qū)”認同情況進行統(tǒng)計得到下表:

(Ⅰ)完成所給的頻率分布直方圖,并求的值;

(Ⅱ)如果從兩個年齡段中的“認同”人群中,按分層抽樣的方法抽取6人參與座談會,然后從這6人中隨機抽取2人作進一步調(diào)查,求這2人的年齡都在內(nèi)的概率 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),有下列四個命題:

①若是奇函數(shù),則的圖象關(guān)于點對稱;

②若對,有,則的圖象關(guān)于直線對稱;

③若對,有,則的圖象關(guān)于點對稱;

④函數(shù)與函數(shù)的圖像關(guān)于直線對稱.

其中正確命題的序號為__________.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左右焦點分別為, ,左頂點為,上頂點為, 的面積為.

(1)求橢圓的方程;

(2)設(shè)直線 與橢圓相交于不同的兩點, , 是線段的中點.若經(jīng)過點的直線與直線垂直于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=sinxcosx﹣cos2(x+ ). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù))是定義域為R的奇函數(shù)

)求t的值;

)若函數(shù)的圖象過點,是否存在正數(shù)m,使函數(shù)上的最大值為0,若存在求出m的值;若不存在請說明理由

查看答案和解析>>

同步練習冊答案