【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
男 | 女 | |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。
(2)能否在犯錯誤的概率不超過百分之一的前提下認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
科目:高中數(shù)學 來源: 題型:
【題目】2020年寒假,因為“新冠”疫情全體學生只能在家進行網(wǎng)上學習,為了研究學生網(wǎng)上學習的情況,某學校隨機抽取名學生對線上教學進行調(diào)查,其中男生與女生的人數(shù)之比為,抽取的學生中男生有人對線上教學滿意,女生中有名表示對線上教學不滿意.
(1)完成列聯(lián)表,并回答能否有的把握認為“對線上教學是否滿意 與性別有關(guān)”;
態(tài)度 性別 | 滿意 | 不滿意 | 合計 |
男生 | |||
女生 | |||
合計 | 100 |
(2)從被調(diào)查的對線上教學滿意的學生中,利用分層抽樣抽取名學生,再在這名學生中抽取名學生,作線上學習的經(jīng)驗介紹,求其中抽取一名男生與一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”江南梅雨的點點滴滴都流潤著濃洌的詩情每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南Q鎮(zhèn)年梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
Ⅰ“梅實初黃暮雨深”假設(shè)每年的梅雨天氣相互獨立,求Q鎮(zhèn)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率;
Ⅱ“江南梅雨無限愁”在Q鎮(zhèn)承包了20畝土地種植楊梅的老李也在犯愁,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關(guān)系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為元,請你幫助老李排解憂愁,他來年應(yīng)該種植哪個品種的楊梅可以使總利潤萬元的期望更大?需說明理由
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求y關(guān)于x的線性回歸方程.
(3)如果廣告費支出為一千萬元,預(yù)測銷售額大約為多少百萬元?
參考公式用最小二乘法求線性回歸方程系數(shù)公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為實數(shù),函數(shù).
(1)若是函數(shù)的一個極值點,求實數(shù)的取值;
(2)設(shè),若,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.
甲每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 | 4 |
對應(yīng)的天數(shù)/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生產(chǎn)的次品數(shù)/件 | 0 | 1 | 2 | 3 |
對應(yīng)的天數(shù)/天 | 30 | 25 | 25 | 20 |
(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出與的函數(shù)關(guān)系式;
(2)按這100天統(tǒng)計的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系內(nèi)的動點P到直線的距離與到點的距離比為.
(1)求動點P所在曲線E的方程;
(2)設(shè)點Q為曲線E與軸正半軸的交點,過坐標原點O作直線,與曲線E相交于異于點的不同兩點,點C滿足,直線和分別與以C為圓心,為半徑的圓相交于點A和點B,求△QAC與△QBC的面積之比的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com