【題目】已知函數(shù)f(x)=ln(x﹣2)﹣ ,(a為常數(shù)且a≠0),若f(x)在x0處取得極值,且x0[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,則a的取值范圍( )
A.a≥e4+2e2
B.a>e2+2e
C.a≥e2+2e
D.a>e4+2e2
【答案】D
【解析】解:由f(x)=ln(x﹣2)﹣ ,得f′(x)= (x>2),令f′(x)=0,可得x0=1± ,∵f(x)在x0處取得極值,∴1+ >2,即a>0.
∴函數(shù)在(2,1+ )上單調(diào)增,在(1+ ,+∞)上單調(diào)減,
又x0[e+2,e2+2],
∴函數(shù)在區(qū)間[e+2,e2+2]上是單調(diào)函數(shù)
∴ 或 ,
解得a>e4+2e2 .
∴a的取值范圍是a>e4+2e2 .
故選:D.
【考點精析】通過靈活運用函數(shù)的最大(小)值與導(dǎo)數(shù),掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=4與x軸負半軸的交點為A,點P在直線l: x+y﹣a=0上,過點P作圓O的切線,切點為T.
(1)若a=8,切點T( ,﹣1),求直線AP的方程;
(2)若PA=2PT,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知A= ,b2﹣a2= c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設(shè)函數(shù) ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M為棱PB的中點.
(1)證明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的離心率為 ,坐標原點O到過點A(0,﹣b)和B(a,0)的直線的距離為 .又直線y=kx+m(k≠0,m≠0)與該橢圓交于不同的兩點C,D.且C,D兩點都在以A為圓心的同一個圓上.
(1)求橢圓的方程;
(2)求△ABC面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列的前項和為,且滿足:.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下命題正確的是( )
A.α,β都是第一象限角,若cosα>cosβ,則sinα>sinβ
B.α,β都是第二象限角,若sinα>sinβ,則tanα>tanβ
C.α,β都是第三象限角,若cosα>cosβ,則sinα>sinβ
D.α,β都是第四象限角,若sinα>sinβ,則tanα>tanβ
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com