如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E為AD的中點,M是棱PC上的點,PA=PD=AD=2BC=2,CD=
3

(1)求證:PE∥平面BDM; 
(2)求三棱錐P-MBD的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)本小題是一個證明線面平行的題,一般借助線面平行的判定定理求解,連接BE,因為BC∥AD,DE=BC,所以四邊形BCDE為平行四邊形,連接EC交BD于O,連接MO,則MO∥PE,則根據(jù)線面平行的判定定理可知PE∥平面BDM.
(2)由于平面PAD⊥底面ABCD,PE⊥AD,由面面垂直的性質(zhì)定理可知PE⊥底面ABCD,所以PE是三棱錐P-DBC的高,且PE=
3
,又因為VP-DMB可看成VP-DBC和VM-DBC差構(gòu)成,由(1)知MO是三棱錐M-DBC的高,由此能求出三棱錐P-MBD的體積.
解答: (1)證明:連接BE,因為BC∥AD,DE=BC,
所以四邊形BCDE為平行四邊形
連接EC交BD于O,連接MO,則MO∥PE,
又MO?平面BDM,PE?平面BDM,
所以PE∥平面BDM.
(2)解:VP-DMB=VP-DBC-VM-DBC
由于平面PAD⊥底面ABCD,PE⊥AD,PE⊥底面ABCD,
所以PE是三棱錐P-DBC的高,且PE=
3

由(1)知MO是三棱錐M-DBC的高,MO=
3
2
,S△BDC=
3
2

所以VP-DBC=
1
2
,VM-DBC=
1
4
,則VP-DMB=
1
4
點評:本題考查直線與平面平行的證明,考查三棱錐體積的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于命題“正三角形內(nèi)任意一點到各邊的距離之和為定值”推廣到空間是“正四面體內(nèi)任意一點到各面的距離之和為( 。
A、定值
B、有時為定值,有時為變數(shù)
C、變數(shù)
D、與正四面體無關(guān)的常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于向量
PAi
(i=1,2,…n),把能夠使得|
PA1
|+|
PA2
|+…+|
PAn
|取到最小值的點P稱為Ai(i=1,2,…n)的“平衡點”.如圖,矩形ABCD的兩條對角線相交于點O,延長BC至E,使得BC=CE,聯(lián)結(jié)AE,分別交BD、CD于F、G兩點.下列結(jié)論中,正確的是( 。
A、A、C的“平衡點”必為O
B、D、C、E的“平衡點”為D、E的中點
C、A、F、G、E的“平衡點”存在且唯一
D、A、B、E、D的“平衡點”必為F

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex,其中e為自然對數(shù)的底數(shù).
(1)求函數(shù)g(x)=f(x)-3x的零點個數(shù).
(2)記曲線y=f(x)在其上一點P(x0,f(x0))(其中x0<0)處的切線為l,l與坐標(biāo)軸所圍成的三角形的面積為S.求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2an-2(n∈N+).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an•log2an}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3x2+2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)-m在區(qū)間[-2,4]上有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x+3)2+y2=100,圓A內(nèi)一定點B(3,0),動圓P過B點且與圓A內(nèi)切,求圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知F1,F(xiàn)2分別是橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,橢圓G與拋物線y2=-8x有一個公共的焦點,且過點(-2,
2
).
(1)求橢圓G的方程;
(2)設(shè)直線l與橢圓G相交于A、B兩點,若
OA
OB
(O為坐標(biāo)原點),試探討直線l與圖形|x|+|y|≤
2
6
3
的公共點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-3,2),
b
=(2,1),
c
=(3,1),t∈R
(1)求|
a
-t
b
|的最小值及相應(yīng)的t的值;
(2)若
a
+t
b
c
共線,求t的值.

查看答案和解析>>

同步練習(xí)冊答案