精英家教網 > 高中數學 > 題目詳情

【題目】下列函數:①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)=x ,⑤f(x)=﹣x2+1中,既是偶函數,又是在區(qū)間(0,+∞)上單調遞減函數為 . (寫出符合要求的所有函數的序號).

【答案】③⑤
【解析】解:①、f(x)=3|x|是偶函數,但是在區(qū)間(0,+∞)上單調遞增,不符合題意;

②、f(x)=x3是奇函數,在區(qū)間(0,+∞)上單調遞增,不符合題意;

③、f(﹣x)=ln =f(x),則是偶函數,又在區(qū)間(0,+∞)上單調遞減,符合題意;

④、f(x)= = 是偶函數,但在區(qū)間(0,+∞)上遞增,不符合題意;

⑤、f(x)=﹣x2+1是偶函數,且在區(qū)間(0,+∞)上單調遞減函數,故符合題意.

所以答案是:③⑤.

【考點精析】本題主要考查了函數單調性的判斷方法和函數的奇偶性的相關知識點,需要掌握單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1的棱長為1,以頂點A為球心, 為半徑作一個球,則球面與正方體的表面相交所得到的曲線的長等于

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】建造一個容積為240m3 , 深為5m的長方體無蓋蓄水池,池壁的造價為180元/m2 , 池底的造價為350元/m2 , 如何設計水池的長與寬,才能使水池的總造價為42000元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2﹣2ax+2+b,(a≠0),若f(x)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)﹣mx在[2,4]上為單調函數,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個內接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設AE=x,綠地面積為y.

(1)寫出y關于x的函數關系式,并指出這個函數的定義域;
(2)當AE為何值時,綠地面積y最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對實數a和b,定義運算“”:ab= ,設函數f(x)=(x2﹣2)(x﹣x2),x∈R,若函數y=f(x)+c的圖象與x軸恰有兩個公共點,則實數c的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直角三角形ABC的頂點坐標A(﹣2,0),直角頂點 ,頂點C在x軸上,點P為線段OA的中點. (Ⅰ)求BC邊所在直線方程;
(Ⅱ)圓M是△ABC的外接圓,求圓M的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=x2﹣2ax+1,a∈R;
(1)若函數f(x)在區(qū)間(﹣1,2)上是單調函數,求實數a的取值范圍;
(2)若不等式f(x)>0對任x∈R上恒成立,求實數a的取值范圍;
(3)若函數f(x)在區(qū)間[1,+∞)的最小值為﹣2,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 若對任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為(
A.
B.
C.2
D.

查看答案和解析>>

同步練習冊答案