【題目】已知二次函數(shù)f(x)=x2﹣2ax+1,a∈R;
(1)若函數(shù)f(x)在區(qū)間(﹣1,2)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若不等式f(x)>0對(duì)任x∈R上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)的最小值為﹣2,求實(shí)數(shù)a的值.
【答案】
(1)解:f(x)=x2﹣2ax+1的對(duì)稱軸為x=a,
∵f(x)在區(qū)間(﹣1,2)上是單調(diào)函數(shù),
∴a≤﹣1或a≥2,
故a的取值范圍為(﹣∞,﹣1]∪[2,+∞)
(2)解:∵不等式f(x)>0對(duì)任x∈R上恒成立,
∴△=4a2﹣4<0,
解得﹣1<a<1,
故a的取值范圍為(﹣1,1)
(3)解:二次函數(shù)f(x)=x2﹣2ax+1的圖象是開口朝上,且以直線x=a為對(duì)稱軸的拋物線,
當(dāng)a≤1時(shí),函數(shù)在區(qū)間[1,+∞)上單調(diào)遞增,當(dāng)x=1時(shí)函數(shù)取最小值2﹣2a=﹣2,解得a=2,舍去,
當(dāng)a>1時(shí),函數(shù)在區(qū)間[1,a]上單調(diào)遞減,在[a,+∞]上單調(diào)遞增,
當(dāng)x=a時(shí)函數(shù)取最小值﹣a2+1=﹣2,解得:a= ,或a=﹣ (舍去),
綜上所述,a= .
【解析】1、本題考查的是二次函數(shù)的單調(diào)性,f(x)在區(qū)間(﹣1,2)上是單調(diào)函數(shù),(﹣1,2)是單I調(diào)區(qū)間的一部分,所以a≤﹣1或a≥2。
2、本題考查的是二次函數(shù)的圖像和性質(zhì)f(x)>0對(duì)任x∈R上恒成立,△=4a2﹣4<0,解得﹣1<a<1。
3、本題考查的是二次函數(shù)的最值情況,二次函數(shù)f(x)=x2﹣2ax+1,當(dāng)a≤1時(shí),函數(shù)在區(qū)間[1,+∞)上單調(diào)遞增,當(dāng)x=1時(shí)函數(shù)取最小值2﹣2a=﹣2,解得a=2,舍去,當(dāng)a>1時(shí),函數(shù)在區(qū)間[1,a]上單調(diào)遞減,在[a,+∞]上單調(diào)遞增,當(dāng)x=a時(shí)函數(shù)取最小值﹣a2+1=﹣2,解得:a= 3 ,或a=﹣ 3 (舍去),所以a= .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某日,甲乙二人隨機(jī)選擇早上6:00﹣7:00的某一時(shí)刻到達(dá)黔靈山公園早鍛煉,則甲比乙提前到達(dá)超過20分鐘的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù):①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)=x ,⑤f(x)=﹣x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為 . (寫出符合要求的所有函數(shù)的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= + .
(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)= [f2(x)﹣2]+f(x)(a為實(shí)數(shù)),求F(x)在a<0時(shí)的最大值g(a);
(3)對(duì)(2)中g(shù)(a),若﹣m2+2tm+ ≤g(a)對(duì)a<0所有的實(shí)數(shù)a及t∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x﹣1+a,g(x)=bf(1﹣x),其中a,b∈R,若關(guān)于x的不等式f(x)≥g(x)的解的最小值為2,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(ax﹣1)( a>0,a≠1 )
(1)討論函數(shù)f(x)的定義域;
(2)當(dāng)a>1時(shí),解關(guān)于x的不等式:f(x)<f(1);
(3)當(dāng)a=2時(shí),不等式f(x)﹣log2(1+2x)>m對(duì)任意實(shí)數(shù)x∈[1,3]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l與橢圓 交于兩點(diǎn)A(x1 , y1),B(x2 , y2),橢圓上的點(diǎn)到下焦點(diǎn)距離的最大值、最小值分別為 ,向量 =(ax1 , by1), =(ax2 , by2),且 ⊥ ,O為坐標(biāo)原點(diǎn). (Ⅰ)求橢圓的方程;
(Ⅱ)判斷△AOB的面積是否為定值,如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a x(a>0且a≠1)的圖象經(jīng)過點(diǎn)(2, )
(1)求a的值
(2)比較f(2)與f(b2+2)的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場(chǎng)調(diào)查,東方百貨超市的一種商品在過去的一個(gè)月內(nèi)(以30天計(jì)算),銷售價(jià)格f(t)與時(shí)間(天)的函數(shù)關(guān)系近似滿足 ,銷售量g(t)與時(shí)間(天)的函數(shù)關(guān)系近似滿足g(t)= .
(1)試寫出該商品的日銷售金額W(t)關(guān)于時(shí)間t(1≤t≤30,t∈N)的函數(shù)表達(dá)式;
(2)求該商品的日銷售金額W(t)的最大值與最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com