【題目】某批發(fā)市場一服裝店試銷一種成本為每件元的服裝規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于成本的,經(jīng)試銷發(fā)現(xiàn)銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.

(1)求一次函數(shù)的解析式,并指出的取值范圍;

(2)若該服裝店獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,可獲得最大利潤最大利潤是多少元?

【答案】(1),;(2),.

【解析】

(1)根據(jù)題意先確定的取值范圍,再利用待定系數(shù)法求解即可;

(2)根據(jù)題意表示出利潤=銷售額-成本,整理后根據(jù)二次函數(shù)性質(zhì)求出最值即可.

(1)由銷售單價不低于成本單價,且獲利不得高于成本的,

可知,

又由,;,,

可得,

所以,其中;

(2)(1)可知,,

,

,

所以當(dāng),取得最大值,,

即銷售單價定為84元時,可獲得最大利潤,最大利潤是864.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計(jì)劃在空地上修建一個矩形的活動場地OCDE及一矩形停車場EFGH,剩余的地方進(jìn)行綠化.若,設(shè)

(Ⅰ)記活動場地與停車場占地總面積為,求的表達(dá)式;

(Ⅱ)當(dāng)為何值時,可使活動場地與停車場占地總面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,離心率是,直線過點(diǎn)交橢圓于, 兩點(diǎn),當(dāng)直線過點(diǎn)時, 的周長為.

求橢圓的標(biāo)準(zhǔn)方程;

當(dāng)直線繞點(diǎn)運(yùn)動時,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)若函數(shù)存在5個零點(diǎn),則實(shí)數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個整數(shù)除以三余二,除以五余三,求這個整數(shù).設(shè)這個整數(shù)為,當(dāng)時, 符合條件的共有_____個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動,是線段軸的交點(diǎn),、分別作直線,使,.

(1)求動點(diǎn)的軌跡的方程;

(2)已知⊙,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最小值;

(Ⅲ)若, 求使方程有唯一解的的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分如圖所示,在長方體,,,分別是的中點(diǎn),且平面.

1的值;

2求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案