【題目】本小題滿分12分如圖所示,在長方體,,、分別是的中點,且平面.

1的值;

2求二面角的余弦值.

【答案】1;2.

【解析】

試題1分析題意,以為原點,,的方向分別作為,軸的正方向建立空間直角坐標(biāo)系,分別求出的坐標(biāo),計算向量的數(shù)量積,求得,,則由條件可知是平面的法向量,利用,即可求得的值;2分別求出平面與平面的一個法向量,利用法向量即可求得二面角的余弦值.

試題解析:以為原點,,,,,軸的正方向建立空間直角坐標(biāo)系,設(shè),則,,,,,, 2分

1由已知可得,, 3分

,,,, 4分

,; 5分

2設(shè)平面的法向量為,

,,,,

, 7分

1可得為平面的法向量,, 9分

, 11分

二面角為銳二面角二面角的余弦值為. 12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場一服裝店試銷一種成本為每件元的服裝規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于成本的,經(jīng)試銷發(fā)現(xiàn)銷售量(件)與銷售單價(元)符合一次函數(shù),且時,時,.

(1)求一次函數(shù)的解析式,并指出的取值范圍;

(2)若該服裝店獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,可獲得最大利潤最大利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一枚硬幣拋10次,那么至少連續(xù)5次都出現(xiàn)正面的不同情形共______種。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)偶函數(shù)

(1)值;

(2)若函數(shù),是否存在實數(shù)使得最小值為0,若存在,求出值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為F,斜率為正的直線l過點F交拋物線于AB兩點,滿足

(1)求直線l的斜率;

(2)設(shè)點在線段上運動,原點關(guān)于點的對稱點為,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,把圓上每一點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線,且傾斜角為,經(jīng)過點的直線與曲線交于兩點.

(1)當(dāng)時,求曲線的普通方程與直線的參數(shù)方程;

(2)求點兩點的距離之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進(jìn)價為20元,每個的加工費為n元,銷售單價為x.根據(jù)市場調(diào)查,須有,,同時日銷售量m(單位:個)與成正比.當(dāng)每個工藝品的銷售單價為29元時,日銷售量為1000.

1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;

2)當(dāng)每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)的圖象在上有且只有一個公共點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)拋物線的焦點是雙曲線的右焦點,拋物線的準(zhǔn)線與軸的交點為,若拋物線上存在一點,且,則直線的方程為__________

查看答案和解析>>

同步練習(xí)冊答案