定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”(n∈N*).
(Ⅰ)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列{cn}的首項為2013,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8052,證明{cn}是“三角形”數(shù)列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項?
(解題中可用以下數(shù)據(jù):lg2≈0.301,lg3≈0.477,lg2013≈3.304)
分析:(Ⅰ)確定{an}是三角形數(shù)列,再利用函數(shù)的單調(diào)性,可得不等式,即可求k的取值范圍;
(Ⅱ)求得數(shù)列{cn}的通項,再利用定義進行證明即可;
(Ⅲ)確定{g(cn)}單調(diào)遞減,利用定義可得不等式lg2013+(n-1)lg(
3
4
)>0
且lgcn-1+lgcn>lgcn-2,由此可得n的范圍,從而可得結(jié)論.
解答:(Ⅰ)解:顯然an=n+1,an+an+1>an+2對任意正整數(shù)都成立,即{an}是三角形數(shù)列.
因為k>1,顯然有f(an)<f(an+1)<f(an+2)<…,
由f(an)+f(an+1)>f(an+2)得kn+kn+1>kn+2
解得
1-
5
2
<k<
1+
5
2

所以當k∈(1,
1+
5
2
)
時,f(x)=kx是數(shù)列{an}的保三角形函數(shù).…(3分)
(Ⅱ)證明:由4sn+1-3sn=8052,得4sn-3sn-1=8052,
兩式相減得4cn+1-3cn=0,所以cn=2013(
3
4
)n-1
…(5分)
經(jīng)檢驗,此通項公式滿足4sn+1-3sn=8052.
顯然cn>cn+1>cn+2
因為cn+1+cn+2=2013(
3
4
)n+2013(
3
4
)n+1=
21
16
•2013(
3
4
)n-1cn
,
所以{cn}是三角形數(shù)列.…(8分)
(Ⅲ)解:g(cn)=lg[2013(
3
4
)n-1]=lg2013+(n-1)lg(
3
4
)
,
所以{g(cn)}單調(diào)遞減.
由題意知,lg2013+(n-1)lg(
3
4
)>0
①且lgcn-1+lgcn>lgcn-2②,
由①得(n-1)lg
3
4
>-lg2013
,解得n<27.4,
由②得nlg
3
4
>-lg2013
,解得n<26.4.
即數(shù)列{bn}最多有26項.…(13分)
點評:本題考查新定義,考查函數(shù)的單調(diào)性,考查解不等式,考查學生分析解決問題的能力,正確理解新定義是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
[理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•青浦區(qū)二模)[理科]定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N*).
(1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
[理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高考數(shù)學模擬專題訓練:解答題(解析版) 題型:解答題

定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
[理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習冊答案