對于定義域為D的函數(shù)f(x),若存在區(qū)間M=[a,b]⊆D(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的“等值區(qū)間”.給出下列四個函數(shù):①f(x)=2x;②f(x)=x3;③f(x)=sinx;④f(x)=log2x+1.則存在“等值區(qū)間”的函數(shù)的序號是
 
考點:進行簡單的合情推理
專題:綜合題,推理和證明
分析:根據(jù)“等值區(qū)間”的定義,要想說明函數(shù)存在“等值區(qū)間”,只要舉出一個符合定義的區(qū)間M即可,但要說明函數(shù)沒有“等值區(qū)間”,可以用反證明法來說明.由此對四個函數(shù)逐一進行判斷,即可得到答案.
解答: 解:①對于函數(shù)f(x)=2x,若存在“等值區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有2a=a,2b=b,
即方程2x=x有兩個解,即y=2x和y=x的圖象有兩個交點,這與y=2x和y=x的圖象沒有公共點相矛盾,故①不存在
“等值區(qū)間”.
②對于函數(shù)f(x)=x3存在“等值區(qū)間”,如 x∈[0,1]時,f(x)=x3∈[0,1].
③對于函數(shù)f(x)=sinx,若正弦函數(shù)存在等值區(qū)間[a,b],則在區(qū)間[a,b]上有sina=a,sinb=b,由正弦函數(shù)的值域知道[a,b]⊆[-1,1],但在區(qū)間]⊆[-1,1]上僅有sin0=0,所以函數(shù)f(x)=sinx沒有“等值區(qū)間”;
④對于 f(x)=log2x+1,由于函數(shù)是定義域內(nèi)的增函數(shù),故在區(qū)間[1,2]上有f(1)=1,f(2)=2,所以函數(shù)存在“等值區(qū)間”[1,2].
故答案為:②④.
點評:本題考查的知識點是函數(shù)的概念及其構(gòu)造要求,考查了函數(shù)的值域,在說明一個函數(shù)沒有“等值區(qū)間”時,利用函數(shù)的性質(zhì)、圖象結(jié)合反證法證明是解答本題的關(guān)鍵,屬于創(chuàng)新題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(3-i)m-(1+i)對應(yīng)的點在第三象限內(nèi),則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,4,5,6六個數(shù)字中,選出一個偶數(shù)和兩個奇數(shù),組成一個沒有重復(fù)數(shù)字的三位數(shù),這樣的三位數(shù)共有
 
個.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)在給定區(qū)間M上存在的正數(shù)t,使得對任意的x∈M,有x+t∈M,且f(x+t)≥f(x),則稱f(x)為M上的t級類增函數(shù),給出下列命題:
①函數(shù)f(x)=3x是R上的1級類增函數(shù);
②若函數(shù)f(x)=R上單調(diào)遞增,則f(x)一定為R上的t級類增函數(shù);
③若函數(shù)f(x)=sinx+ax為[
π
2
,+∞]上的
π
3
級類增函數(shù),則實數(shù)a的最小值為2;
④若函數(shù)f(x)=x2-3x為[1,+∞)上的t級類增函數(shù),則實數(shù)t的取值范圍為[1,+∞).
其中正確的命題為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是拋物線y2=4x上的一個動點,F(xiàn)為拋物線焦點,B(3,2),則|PB|+|PF|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A
3
n
=
C
4
n
,則n=( 。
A、26B、27C、28D、29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的橢圓C的右焦點為F(3,0),離心率等于
3
5
,則橢圓的方程是( 。
A、
y2
25
+
x2
16
=1
B、
y2
25
+
x2
9
=1
C、
x2
25
+
y2
16
=1
D、
x2
25
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
2+
2
3
=2
2
3
,
3+
3
8
=3
3
8
,
4+
4
15
=4
4
15
,…,若
6+
a
b
=6
a
b
(a,b∈R),則(  )
A、a=5,b=24
B、a=6,b=24
C、a=6,b=35
D、a=5,b=35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1-3x)8=a0+a1x+a2x2+…+a8x8,則|a0|+|a1|+|a2|+…+|a8|的值為( 。
A、1
B、28
C、38
D、48

查看答案和解析>>

同步練習(xí)冊答案