已知
1
3
≤a≤1,若函數(shù)f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a).
(1)求g(a)的函數(shù)表達式;
(2)判斷函數(shù)g(a)在區(qū)間[
1
3
,1]上的單調(diào)性,并求出g(a)的最小值.
考點:二次函數(shù)在閉區(qū)間上的最值,函數(shù)解析式的求解及常用方法,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)明確f(x)=ax2-2x+1的對稱軸為x=
1
a
,由
1
3
≤a≤1,知1≤
1
a
≤3,可知f(x)在[1,3]上單調(diào)遞減,N(a)=f(
1
a
)=1-
1
a
.由a的符號進行分類討論,能求出g(a)的解析式;
(2)根據(jù)(1)的解答求g(a)的最值.
解答: 解:f(x)=ax2-2x+1的對稱軸為x=
1
a
,
1
3
≤a≤1,∴1≤
1
a
≤3,
∴f(x)在[1,3]上的最小值f(x)min=N(a)=f(
1
a
)=1-
1
a

∵f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),
∴①當1≤
1
a
≤2,即
1
2
≤a≤1時,
M(a)=f(3)=9a-5,N(a)=f(
1
a
)=1-
1
a

g(a)=M(a)-N(a)=9a+
1
a
-6.
②當2<
1
a
≤3時.即
1
3
≤a<
1
2
時,
M(a)=f(1)=a-1,N(a)=f(
1
a
)=1-
1
a

g(a)=M(a)-N(a)=a+
1
a
-2.
∴g(a)=
9a+
1
a
-6,
1
2
≤a≤1
a+
1
a
-2,
1
3
≤a<
1
2

(2)由(1)可知當
1
2
≤a≤1時,g(a)=M(a)-N(a)=9a+
1
a
-6≥0,當且僅當a=
1
3
時取等號,所以它在[
1
2
,1]上單調(diào)遞增;
1
3
≤a<
1
2
時,g(a)=M(a)-N(a)=a+
1
a
-2≥0,當且僅當a=1時取等號,所以g(a)在[
1
3
,
1
2
]單調(diào)遞減.
∴g(a)的最小值為g(
1
2
)=9×
1
2
+2-6=
1
2
點評:本題考查函數(shù)的解析式的求法以及分段函數(shù)的最值求法,解題時要認真審題,仔細解答,注意分類討論思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則這個幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次的一次學(xué)科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(Ⅰ)求參加測試的總?cè)藬?shù)及分數(shù)在[80,90)之間的人數(shù);
(Ⅱ)若要從分數(shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,恰有一份分數(shù)在[90,100)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以棱長為1的正方體的各個面的中心為頂點的幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,方程f(x)=2x至多有一個實根,求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有50名學(xué)生,在學(xué)校組織的一次數(shù)學(xué)質(zhì)量抽測中,如果按照抽測成績的分數(shù)段[60,65),[65,70),…[95,100)進行分組,得到的分布情況如圖所示.求:
(Ⅰ)該班抽測成績在[70,85)之間的人數(shù);
(Ⅱ)該班抽測成績不低于85分的人數(shù)占全班總?cè)藬?shù)的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點A(3,2),B(4,
3
),C(2,
3
),點P(x,y)是△ABC的內(nèi)部(包括邊界)的一個動點,則
y
x-1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合E={x||x-1|≥m},F(xiàn)={x|
10
x+6
>1}.
(1)若m=3,求E∩F;
(2)若E∪F=R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一水池有2個進水口,1個出水口,每個進水口進水速度如圖甲,出水口出水速度如圖乙所示.某天0點到6點,該水池的蓄水量如圖丙所示.

給出以下3個論斷:①0點到3點只進水不出水;②3點到4點所打開一個進水口和一個出水口;③4點到6點不進水不出水.則正確論斷的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案