【題目】如圖,已知等邊的邊長為4,,分別為邊的中點,為的中點,為邊上一點,且,將沿折到的位置,使平面平面.
(1)求證:平面平面;
(2)設,求三棱錐的體積.
【答案】詳見解析.
【解析】
試題分析:(1)首先根據(jù)已知條件可證出,再由面面垂直的性質定理并結合平面平面可得出平面,然后再由和可證得,再在正中易證得平面,最后由面面垂直的判定定理即可得出所證的結論;
(2)首先由(1)可知,平面,即為三棱錐底面上的高,然后結合已知可得出,,,進而可得,最后由三棱錐的體積計算公式即可得出所求的結果.
試題解析:(1)因為,為等邊的,邊的中點,
所以是等邊三角形,且.因為是的中點,所以.
又由于平面平面,平面,所以平面.
又平面,所以.因為,所以,所以.
在正中知,所以.而,所以平面.
又因為平面,所以平面平面.
(2)由(1)知,平面,所以為三棱錐底面上的高.
根據(jù)正三角形的邊長為4,知是邊長為2的等邊三角形,所以.
易知,.
又由(1)知,所以,
所以,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形中,,,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)點在線段上運動,設平面與平面二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對邊,在四面體PABC中,S1,S2,S3,S分別表示△PAB,△PBC,△PCA,△ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。寫出對四面體性質的猜想,并證明你的結論
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某制造廠商10月份生產了一批乒乓球,從中隨機抽取個進行檢查,測得每個球的直徑(單位:),將數(shù)據(jù)進行分組,得到如下頻率分布表:
(1)求、、及、的值,并畫出頻率分布直方圖(結果保留兩位小數(shù));
(2)已知標準乒乓球的直徑為,直徑誤差不超過的為五星乒乓球,若這批乒乓球共有個,試估計其中五星乒乓球的數(shù)目;
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是)作為代表,估計這批乒乓球直徑的平均值和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子里裝有標號1、2、3、4的4張形狀大小完全相同的標簽,先后隨機地選取兩張標簽,根據(jù)下列條件,分別求兩張標簽上的數(shù)字為相鄰整數(shù)的概率.
(1)標簽的選取是無放回的;
(2)標簽的選取是有放回的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】老師講一道數(shù)學題,李峰能聽懂的概率是0.8,是指( )
A.老師每講一題,該題有80%的部分能聽懂,20%的部分聽不懂
B.老師在講的10道題中,李峰能聽懂8道
C.李峰聽懂老師所講這道題的可能性為80%
D.以上解釋都不對
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com