已知函數(shù)f(x)=-x3+ax2-4在x=2處取得極值,若m,n∈[-1,1],則f(m)+f′(n)的最小值是( )
A.-13 B.-15
C.10 D.15
A 求導(dǎo)得f′(x)=-3x2+2ax,
由函數(shù)f(x)在x=2處取得極值知f′(2)=0,即-3×4+2a×2=0,∴a=3.
由此可得f(x)=-x3+3x2-4,
f′(x)=-3x2+6x,
易知f(x)在[-1,0)上單調(diào)遞減,在(0,1]上單調(diào)遞增,
∴當(dāng)m∈[-1,1]時(shí),f(m)min=f(0)=-4.
又f′(x)=-3x2+6x的圖像開(kāi)口向下,
且對(duì)稱軸為x=1,∴當(dāng)n∈[-1,1]時(shí),
f′(n)min=f′(-1)=-9.
故f(m)+f′(n)的最小值為-13.故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知a=20.2,b=0.40.2,c=0.40.6,則( )
A.a>b>c B.a>c>b
C.c>a>b D.b>c>a
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某地近年來(lái)持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價(jià)”計(jì)費(fèi)方法,具體方法:每戶每月用水量不超過(guò)4噸的每噸2元;超過(guò)4噸而不超過(guò)6噸的,超出4噸的部分每噸4元;超過(guò)6噸的,超出6噸的部分每噸6元.
(1)寫(xiě)出每戶每月用水量x(噸)與支付費(fèi)用y(元)的函數(shù)關(guān)系;
(2)該地一家庭記錄了去年12個(gè)月的月用水量(x∈N*)如下表:
月用水量x(噸) | 3 | 4 | 5 | 6 | 7 |
頻數(shù) | 1 | 3 | 3 | 3 | 2 |
請(qǐng)你計(jì)算該家庭去年支付水費(fèi)的月平均費(fèi)用(精確到1元);
(3)今年干旱形勢(shì)仍然嚴(yán)峻,該地政府號(hào)召市民節(jié)約用水,如果每個(gè)月水費(fèi)不超過(guò)12元的家庭稱為“節(jié)約用水家庭”,隨機(jī)抽取了該地100戶的月用水量作出如下統(tǒng)計(jì)表:
月用水量x(噸) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
據(jù)此估計(jì)該地“節(jié)約用水家庭”的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是( )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=(x2-ax)ex(x∈R),a為實(shí)數(shù).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f(x)在閉區(qū)間[-1,1]上為減函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=x2-1與函數(shù)g(x)=aln x(a≠0).
(1)若f(x),g(x)的圖像在點(diǎn)(1,0)處有公共的切線,求實(shí)數(shù)a的值;
(2)設(shè)F(x)=f(x)-2g(x),求函數(shù)F(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=-x0,則稱x0是f(x)的一個(gè)“次不動(dòng)點(diǎn)”,也稱f(x)在區(qū)間D上存在“次不動(dòng)點(diǎn)”,若函數(shù)f(x)=ax2-3x-a+在區(qū)間[1,4]上存在“次不動(dòng)點(diǎn)”,則實(shí)數(shù)a的取值范圍是( )
A.(-∞,0) B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知sin α<0,tan α>0.
(1)求α角的集合;
(2)求終邊所在的象限;
(3)試判斷tansincos的符號(hào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于集合{a1,a2,…,an}和常數(shù)a0,定義:ω=為集合{a1,a2,…,an}相對(duì)a0的“正弦方差”,則集合相對(duì)a0的“正弦方差”為( )
A. B.
C. D.與a0有關(guān)的一個(gè)值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com