【題目】某縣應(yīng)國家號(hào)召,積極開展了建設(shè)新農(nóng)村活動(dòng),實(shí)行以獎(jiǎng)代補(bǔ),并組織有關(guān)部門圍繞新農(nóng)村建設(shè)中的三個(gè)方面(新設(shè)施,新環(huán)境,新風(fēng)尚)對(duì)各個(gè)村進(jìn)行綜合評(píng)分,高分(大于88分)的村先給予5萬元的基礎(chǔ)獎(jiǎng)勵(lì),然后比88分每高一分,獎(jiǎng)勵(lì)增加5千元,低分(小于等于75分)的村給予通報(bào),取消5萬元的基礎(chǔ)獎(jiǎng)勵(lì),且比75分每低1分,還要扣款1萬元,并要求重新整改建設(shè),分?jǐn)?shù)在之間的只享受5萬元的基礎(chǔ)獎(jiǎng)勵(lì),下面是甲、乙兩個(gè)鄉(xiāng)鎮(zhèn)各10個(gè)村的得分?jǐn)?shù)據(jù)(單位:分):

甲:62,7486,68,9775,8898,76,99

乙:71,81,72,8691,77,85,7883,84.

1)根據(jù)上述數(shù)據(jù)完成如圖的莖葉圖,并通過莖葉圖比較兩個(gè)鄉(xiāng)鎮(zhèn)各10個(gè)村的得分的平均值及分散程度;(不要求計(jì)算具體的數(shù)值,只給出結(jié)論即可)

2)為繼續(xù)做好新農(nóng)村的建設(shè)工作,某部門決定在這兩個(gè)鄉(xiāng)鎮(zhèn)中任選兩個(gè)低分村進(jìn)行幫扶重建,求抽取的兩個(gè)村中,兩個(gè)鄉(xiāng)鎮(zhèn)中各有一個(gè)村的概率;

3)從獲取獎(jiǎng)勵(lì)的角度看,甲、乙兩個(gè)鄉(xiāng)鎮(zhèn)哪個(gè)獲取的獎(jiǎng)勵(lì)多?(需寫出計(jì)算過程)

【答案】1)甲鄉(xiāng)鎮(zhèn)的平均分高于乙鄉(xiāng)鎮(zhèn)的平均分,乙鄉(xiāng)鎮(zhèn)的得分比較集中,甲鄉(xiāng)鎮(zhèn)的比較分散;(2;(3)乙鄉(xiāng)鎮(zhèn),見解析.

【解析】

1)先根據(jù)給出的數(shù)據(jù)完成莖葉圖,再通過莖葉圖得出結(jié)論;

2)先計(jì)算出從甲、乙兩個(gè)鄉(xiāng)鎮(zhèn)10個(gè)村中各抽取一個(gè)村,其得分是低分的概率,即可求解所求概率;

3)分別求出甲、乙兩個(gè)鄉(xiāng)鎮(zhèn)所獲得的獎(jiǎng)勵(lì)方可判斷.

1)莖葉圖:

由莖葉圖可知甲鄉(xiāng)鎮(zhèn)的平均分高于乙鄉(xiāng)鎮(zhèn)的平均分,乙鄉(xiāng)鎮(zhèn)的得分比較集中,甲鄉(xiāng)鎮(zhèn)的比較分散.

2)由題意,將甲鄉(xiāng)鎮(zhèn)低分的村記為,乙鄉(xiāng)鎮(zhèn)低分的村記為,則隨機(jī)抽取2個(gè)低分村的基本事件有,

,共15個(gè)基本事件.

其中兩個(gè)鄉(xiāng)鎮(zhèn)各取一個(gè)村包含,共8個(gè)基本事件,

∴抽取得兩村中兩個(gè)鄉(xiāng)鎮(zhèn)各有一個(gè)村的概率為.

3)由莖葉圖可知甲鄉(xiāng)鎮(zhèn)10個(gè)村中,高分有3個(gè),分別為9798,99分,獎(jiǎng)勵(lì)分共9+10+11=30分;低分有4個(gè),分別是75,74,68,62分,扣款分共1+7+13=21分,分?jǐn)?shù)在之間的有3個(gè),

故甲鄉(xiāng)鎮(zhèn)所獲得獎(jiǎng)勵(lì)為萬元,

由莖葉圖可知乙鄉(xiāng)鎮(zhèn)10個(gè)村中,高分有1個(gè),為91分,獎(jiǎng)勵(lì)分共3分,低分有2個(gè),分別是71,72分,扣款分共分,分?jǐn)?shù)在之間的有7個(gè),

故乙鄉(xiāng)鎮(zhèn)所獲得獎(jiǎng)勵(lì)為萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點(diǎn),直線與平面所成角的正弦值為,點(diǎn)上移動(dòng).

(Ⅰ)證明:無論點(diǎn)上如何移動(dòng),都有平面平面

(Ⅱ)求點(diǎn)恰為的中點(diǎn)時(shí),二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩陣B

1 AB;

2 若曲線C1在矩陣AB對(duì)應(yīng)的變換作用下得到另一曲線C2,求C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)當(dāng)時(shí),解不等式

2)已知是以2為周期的偶函數(shù),且當(dāng)時(shí),有.,且,求函數(shù)的反函數(shù);

3)若在上存在個(gè)不同的點(diǎn),,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個(gè)數(shù)是(

1)已知沙坪壩明天刮風(fēng)的概率P(A)=0.5,下雨的概率=0.3,則沙坪壩明天又刮風(fēng)又下雨的概率 .

2)命題 p :直線ax y 1 0 3x (a 2) y 3 0 平行; 命題 q : a 3 . q p 的必要條件.

37 除后所得的余數(shù)為5.

4 已知i 是虛數(shù)單位,復(fù)數(shù),則最小值是2.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今天你低碳了嗎?近來國內(nèi)網(wǎng)站流行一種名為碳排放計(jì)算器的軟件,人們可以由此計(jì)算出自己每天的碳排放量,如家居用電的碳排放量(千克)=耗電度數(shù)×0785,汽車的碳排放量(千克)=油耗公升數(shù)×0785等,某班同學(xué)利用寒假在兩個(gè)小區(qū)逐戶進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查.若生活習(xí)慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,這二族人數(shù)占各自小區(qū)總?cè)藬?shù)的比例P數(shù)據(jù)如下:

A小區(qū)

低碳族

非低碳族


B小區(qū)

低碳族

非低碳族

比例P

1/2

1/2


比例P

4/5

1/5

1)如果甲、乙來自A小區(qū),丙、丁來自B小區(qū),求這4人中恰好有兩人是低碳族的概率;

2A小區(qū)經(jīng)過大力宣傳,每周非低碳中有20%的人加入到低碳族的行列,如果兩周后隨機(jī)地從A小區(qū)中任選25個(gè)人,記表示25個(gè)人中的低碳族人數(shù),求E

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)證明:在區(qū)間上有且僅有個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著改革開放的不斷深入,祖國不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,201911日起我國實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等.其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:

級(jí)數(shù)

一級(jí)

二級(jí)

三級(jí)

四級(jí)

每月應(yīng)納稅所得額(含稅)

不超過3000元的部分

超過3000元至12000元的部分

超過12000元至25000元的部分

超過25000元至35000元的部分

稅率

3

10

20

25

1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項(xiàng)附加扣除.請(qǐng)問李某月應(yīng)繳納的個(gè)稅金額為多少?

2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個(gè)孩子的有400人,沒有孩子的有100人,有一個(gè)孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)附加扣除(受統(tǒng)計(jì)的500人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為20000元,依據(jù)樣本估計(jì)總體的思想,試估計(jì)在新個(gè)稅政策下這類人群繳納個(gè)稅金額的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知xy,z均為正數(shù).

1)若xy1,證明:|x+z||y+z|4xyz;

2)若,求2xy2yz2xz的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案