【題目】隨著改革開放的不斷深入,祖國不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,2019年1月1日起我國實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等.其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 | 四級 | |
每月應(yīng)納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元至25000元的部分 | 超過25000元至35000元的部分 | |
稅率 | 3 | 10 | 20 | 25 |
(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項(xiàng)附加扣除.請問李某月應(yīng)繳納的個(gè)稅金額為多少?
(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個(gè)孩子的有400人,沒有孩子的有100人,有一個(gè)孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)附加扣除(受統(tǒng)計(jì)的500人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為20000元,依據(jù)樣本估計(jì)總體的思想,試估計(jì)在新個(gè)稅政策下這類人群繳納個(gè)稅金額的分布列與期望.
【答案】(1)李某月應(yīng)繳納的個(gè)稅金額為元,(2)分布列詳見解析,期望為1150元
【解析】
(1)分段計(jì)算個(gè)人所得稅額;
(2)隨機(jī)變量X的所有可能的取值為990,1190,1390,1590,分別求出各值對應(yīng)的概率,列出分布列,求期望即可.
解:(1)李某月應(yīng)納稅所得額(含稅)為:29600500010002000=21600元
不超過3000的部分稅額為3000×3%=90元
超過3000元至12000元的部分稅額為9000×10%=900元,
超過12000元至25000元的部分稅額為9600×20%=1920元
所以李某月應(yīng)繳納的個(gè)稅金額為90+900+1920=2910元,
(2)有一個(gè)孩子需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:20000500010002000=12000元,
月應(yīng)繳納的個(gè)稅金額為:90+900=990元
有一個(gè)孩子不需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:2000050001000=14000元,
月應(yīng)繳納的個(gè)稅金額為:90+900+400=1390元;
沒有孩子需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:2000050002000=13000元,
月應(yīng)繳納的個(gè)稅金額為:90+900+200=1190元;
沒有孩子不需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:200005000=15000元,
月應(yīng)繳納的個(gè)稅金額為:90+900+600=1590元;
.
所以隨機(jī)變量X的分布列為:
990 | 1190 | 1390 | 1590 | |
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級有400名學(xué)生參加月考,用簡單隨機(jī)抽樣的方法抽取了一個(gè)容量為50的樣本,得到數(shù)學(xué)成績的頻率分布直方圖如圖所示.
(1)求第四個(gè)小矩形的高;
(2)估計(jì)本校在這次統(tǒng)測中數(shù)學(xué)成績不低于120分的人數(shù);
(3)已知樣本中,成績在內(nèi)的有兩名女生,現(xiàn)從成績在這個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取2人做學(xué)習(xí)交流,求恰好男生女生各有一名的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為常數(shù),函數(shù)
(1)過坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求;
(2)令,若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車生產(chǎn)廠家為了解某型號電動汽車的“實(shí)際平均續(xù)航里程數(shù)”,收集了使用該型號電動汽車年以上的部分客戶的相關(guān)數(shù)據(jù),得到他們的電動汽車的“實(shí)際平均續(xù)航里程數(shù)”.從年齡在40歲以下的客戶中抽取10位歸為A組,從年齡在40歲(含40歲)以上的客戶中抽取10位歸為B組,將他們的電動汽車的“實(shí)際平均續(xù)航里程數(shù)”整理成下圖,其中“+”表示A組的客戶,“⊙”表示B組的客戶.
注:“實(shí)際平均續(xù)航里程數(shù)”是指電動汽車的行駛總里程與充電次數(shù)的比值.
(Ⅰ)記A,B兩組客戶的電動汽車的“實(shí)際平均續(xù)航里程數(shù)”的平均值分別為,,根據(jù)圖中數(shù)據(jù),試比較,的大。ńY(jié)論不要求證明);
(Ⅱ)從A,B兩組客戶中隨機(jī)抽取2位,求其中至少有一位是A組的客戶的概率;
(III)如果客戶的電動汽車的“實(shí)際平均續(xù)航里程數(shù)”不小于350,那么稱該客戶為“駕駛達(dá)人”.從A,B兩組客戶中,各隨機(jī)抽取1位,記“駕駛達(dá)人”的人數(shù)為,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=k(x+1)與C相切于點(diǎn)A,|AF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線l交C于M,N兩點(diǎn),T是MN的中點(diǎn),若|MN|=8,求點(diǎn)T到y軸距離的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,函數(shù).
(1)若正項(xiàng)數(shù)列滿足,試求出, , ,由此歸納出通項(xiàng),并加以證明;
(2)若正項(xiàng)數(shù)列滿足(n∈N*),數(shù)列的前項(xiàng)和為Tn,且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某音樂院校舉行“校園之星”評選活動,評委由本校全體學(xué)生組成,對兩位選手,隨機(jī)調(diào)查了20個(gè)學(xué)生的評分,得到下面的莖葉圖:
所得分?jǐn)?shù) | 低于60分 | 60分到79分 | 不低于80分 |
分流方向 | 淘汰出局 | 復(fù)賽待選 | 直接晉級 |
(1)通過莖葉圖比較兩位選手所得分?jǐn)?shù)的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);
(2)舉辦方將會根據(jù)評分結(jié)果對選手進(jìn)行三向分流,根據(jù)所得分?jǐn)?shù),估計(jì)兩位選手中哪位選手直接晉級的概率更大,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國家A1,A2,A3和3個(gè)歐洲國家B1,B2,B3中選擇2個(gè)國家去旅游.
(1)若從這6個(gè)國家中任選2個(gè),求這2個(gè)國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個(gè),求這兩個(gè)國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受電視機(jī)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺電視機(jī)的利潤與該電視機(jī)首次出現(xiàn)故障的時(shí)間有關(guān).某電視機(jī)制造廠生產(chǎn)甲、乙兩種型號電視機(jī),保修期均為2年,現(xiàn)從該廠已售出的兩種型號電視機(jī)中各隨機(jī)抽取50臺,統(tǒng)計(jì)數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故障時(shí)間x(年) | |||||
電視機(jī)數(shù)量(臺) | 3 | 5 | 42 | 8 | 42 |
每臺利潤(千元) | 1 | 2 | 3 | 1.8 | 2.8 |
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲種型號電視機(jī)中隨機(jī)抽取一臺,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)該廠預(yù)計(jì)今后這兩種型號電視機(jī)銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種型號電視機(jī),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種型號電視機(jī)?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com