【題目】某圓拱橋的示意圖如圖所示,該圓拱的跨度AB是36 m,拱高OP是6 m,在建造時(shí),每隔3 m需用一個(gè)支柱支撐,求支柱A2P2的長(zhǎng).(精確到0.01 m)
【答案】12-24 m
【解析】試題分析:建立坐標(biāo)系,支柱A2P2的長(zhǎng)問題轉(zhuǎn)化求點(diǎn)P2的縱坐標(biāo),根據(jù)條件求出圓拱所在圓的方程,即可求解.
試題解析:
如圖,以線段AB所在的直線為x軸,線段AB的中點(diǎn)O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,那么點(diǎn)A、B、P的坐標(biāo)分別為(-18,0)、(18,0)、(0,6).
設(shè)圓拱所在的圓的方程是x2+y2+Dx+Ey+F=0.
因?yàn)?/span>A、B、P在此圓上,故有
,解得.
故圓拱所在的圓的方程是x2+y2+48y-324=0.
將點(diǎn)P2的橫坐標(biāo)x=6代入上式,解得y=-24+12.
答:支柱A2P2的長(zhǎng)約為12-24 m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)比較下列兩組實(shí)數(shù)的大。 ① ﹣1與2﹣ ;②2﹣ 與 ﹣ ;
(Ⅱ)類比以上結(jié)論,寫出一個(gè)更具一般意義的結(jié)論,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,點(diǎn)M 在橢圓E上. (Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(﹣4,0),直線y=kx+1與橢圓E交于A,B兩點(diǎn),若∠APO=∠BPO,(其中O為坐標(biāo)原點(diǎn)),
求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+1(a∈R).
(1)若函數(shù)f(x)的圖象在x=1處的切線l垂直于直線y=x,求實(shí)數(shù)a的值及直線l的方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若x>1,求證:lnx<x﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線l1:ax+3y+6=0,l2:2x+(a+1)y+6=0與圓C:x2+y2+2x=b2-1(b>0)的位置關(guān)系是“平行相交”,則實(shí)數(shù)b的取值范圍為 ( )
A. (, ) B. (0, )
C. (0, ) D. (, )∪(,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( )
A.
B.( )
C.( ,1)
D.( ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的平面圖形中,ABCD是邊長(zhǎng)為2的正方形,△HDA和△GDC都是以D為直角頂點(diǎn)的等腰直角三角形,點(diǎn)E是線段GC的中點(diǎn).現(xiàn)將△HDA和△GDC分別沿著DA,DC翻折,直到點(diǎn)H和G重合為點(diǎn)P.連接PB,得如圖2的四棱錐.
(Ⅰ)求證:PA∥平面EBD;
(Ⅱ)求二面角C﹣PB﹣D大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l1經(jīng)過點(diǎn)A(m,1),B(-3,4),直線l2經(jīng)過點(diǎn)C(1,m),D(-1,m+1),當(dāng)l1∥l2或l1⊥l2時(shí),分別求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com