【題目】(Ⅰ)比較下列兩組實數(shù)的大。 ① ﹣1與2﹣ ;②2﹣ ;
(Ⅱ)類比以上結論,寫出一個更具一般意義的結論,并給出證明.

【答案】解:(Ⅰ)①( + 2﹣(2+1)2=2 ﹣4>0.

+ >2+1,即 ﹣1>2﹣

②(2+ 2﹣( + 2=4 ﹣2 =2 ﹣2 >0.

故2+ + ,即2﹣

(Ⅱ)由(Ⅰ)可得一般結論:若n是正整數(shù),則

證明如下:左﹣右=( )﹣( )= = >0,

則有


【解析】(Ⅰ)根據(jù)題意,對于①、②,將不等式的左右兩邊同時平方,再作差比較大小,即可得答案;(Ⅱ)由(Ⅰ)可得一般結論:若n是正整數(shù),則 ,利用作差法證明即可得證明.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:x0∈(0,+∞),3 +x0=2016,命題q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)為偶函數(shù),那么,下列命題為真命題的是(
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ax3﹣x2+x在區(qū)間(0,2)上是單調(diào)增函數(shù),則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) )是定義域為R的奇函數(shù).
(1)求k的值;
(2)若 ,不等式 恒成立,求實數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)(理)求ξ的分布列和數(shù)學期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)(理)求ξ的分布列和數(shù)學期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五面體 中,四邊形 是邊長為 的正方形, 平面 , , .

(1)求證: 平面
(2)求直線 與平面 所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 表示兩條不同的直線, 表示一個平面,給出下列四個命題:
;②
;④ .
其中正確命題的序號是( )
A.①②
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某圓拱橋的示意圖如圖所示,該圓拱的跨度AB36 m拱高OP6 m,在建造時每隔3 m需用一個支柱支撐,求支柱A2P2的長(精確到0.01 m)

查看答案和解析>>

同步練習冊答案