已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為x-2y-2=0.
(1)求a,b的值;
(2)當(dāng)x>1時(shí),f(x)+
k
x
<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N*,且n≥2時(shí),
1
2ln2
+
1
3ln3
+…+
1
nlnn
3n2-n-2
2n2+2n
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)利用函數(shù)在點(diǎn)(1,f(1))處的導(dǎo)數(shù)值即曲線的斜率及點(diǎn)在曲線上求得a,b的值;
(2)當(dāng)x>1時(shí),f(x)+
k
x
<0恒成立,等價(jià)于k<0.5x2-xlnx,構(gòu)造函數(shù),求最值,即可求實(shí)數(shù)k的取值范圍;
(3)證明
1
xlnx
2
x2-1
=
1
x-1
-
1
x+1
,把x=1,2,…n分別代入上面不等式,并相加得結(jié)論.
解答: (1)解:∵f(x)=alnx+bx,∴f′(x)=
a
x
+b.
∵直線x-2y-2=0的斜率為0.5,且過點(diǎn)(1,-0.5),…(1分)
∴f(1)=-0.5,f′(1)=0.5
解得a=1,b=-0.5.…(3分)
(2)解:由(1)得f(x)=lnx-0.5x.
當(dāng)x>1時(shí),f(x)+
k
x
<0恒成立,等價(jià)于k<0.5x2-xlnx.…(4分)
令g(x)=0.5x2-xlnx,則g′(x)=x-1-lnx.…(5分)
令h(x)=x-1-lnx,則h′(x)=
x-1
x

當(dāng)x>1時(shí),h′(x)>0,函數(shù)h(x)在(1,+∞)上單調(diào)遞增,
故h(x)>h(1)=0…(6分)
從而,當(dāng)x>1時(shí),g′(x)>0,即函數(shù)g(x)在(1,+∞)上單調(diào)遞增,
故g(x)>g(1)=0.5.…(7分)
∴k≤0.5.…(9分)
(3)證明:由(2)得,當(dāng)x>1時(shí),lnx-0.5x+
1
2x
<0,可化為xlnx<
x2-1
2
,…(10分)
又xlnx>0,
從而,
1
xlnx
2
x2-1
=
1
x-1
-
1
x+1
.…(11分)
把x=2,…n分別代入上面不等式,并相加得,
1
2ln2
+
1
3ln3
+…+
1
nlnn
>1-
1
3
+
1
2
-
1
4
+…+
1
n-1
-
1
n+1
=1+
1
2
-
1
n
-
1
n+1
=
3n2-n-2
2n2+2n
.…(14分)
點(diǎn)評(píng):本題屬導(dǎo)數(shù)的綜合應(yīng)用題,考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,會(huì)利用導(dǎo)數(shù)研究函數(shù)的最值,考查不等式的證明,有難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x(x-1),x>0
(x-1)2,x≤0.
,則函數(shù)f(1)的值為( 。
A、-1B、0C、1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x0是方程式lgx+x=2的解,則x0屬于區(qū)間( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-(x-3)|x|,求該函數(shù)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,曲線C1
2
ρcos(θ+
π
4
)=1,設(shè)C1與極軸的交點(diǎn)為P.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為
x=
2
cosϕ
y=sinϕ
(ϕ為參數(shù)).
(Ⅰ)求點(diǎn)P的直角坐標(biāo),并把曲線C2化成普通方程;
(Ⅱ)若動(dòng)直線l過點(diǎn)P,且與曲線C2交于兩個(gè)不同的點(diǎn)A,B,求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)g(x)對(duì)任意實(shí)數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1,令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R,x>0).
(1)求g(x)的表達(dá)式;
(2)設(shè)1<m≤e,H(x)=f(x)-(m+1)x.證明:對(duì)任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差為d,求證:
am-an
m-n
=d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a2-3a+1=0,求
(a3+a-3)(a3-a-3)
(a4+a-4+1)(a-a-1)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x+m(a>0)
(Ⅰ)若a=1時(shí)函數(shù)f(x)有三個(gè)互不相同的零點(diǎn),求m的范圍;
(Ⅱ)若函數(shù)f(x)在[-1,1]內(nèi)沒有極值點(diǎn),求a的范圍;
(Ⅲ)若對(duì)任意的a∈{3,6},不等式f(x)≤1在x∈[-2,2]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案