(2013•嘉興二模)若f(x0)是函數(shù)f(x)在點x0附近的某個局部范圍內(nèi)的最大(小)值,則稱f(x0)是函數(shù)f(x)的一個極值,x0為極值點.已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若a=
1
e-1
,求函數(shù)y=|f(x)|的極值點;
(Ⅱ)若不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
恒成立,求a的取值范圍.
(e為自然對數(shù)的底數(shù))
分析:(Ⅰ)把a=
1
e-1
代入可得函數(shù)的解析式,進而可得導函數(shù)和單調(diào)區(qū)間,可得函數(shù)的極值點;
(Ⅱ)原不等式等價于lnx+
ax2
e2
-
(1+2a)x
e
+a≤0
,設(shè)g(x)=lnx+
ax2
e2
-
(1+2a)x
e
+a
,通過求導數(shù),分a≤0,和a>0討論可得答案.
解答:解:(Ⅰ)若a=
1
e-1
,則f(x)=lnx-
x-1
e-1
,f′(x)=
1
x
-
1
e-1

當x∈(0,e-1)時,f'(x)>0,f(x)單調(diào)遞增;
當x∈(e-1,+∞)時,f'(x)<0,f(x)單調(diào)遞減.…(2分)
又因為f(1)=0,f(e)=0,所以
當x∈(0,1)時,f(x)<0;當x∈(1,e-1)時,f(x)>0;
當x∈(e-1,e)時,f(x)>0;當x∈(e,+∞)時,f(x)<0.…(4分)
故y=|f(x)|的極小值點為1和e,極大值點為e-1.…(6分)
(Ⅱ)不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
,
整理為lnx+
ax2
e2
-
(1+2a)x
e
+a≤0
.…(*)
設(shè)g(x)=lnx+
ax2
e2
-
(1+2a)x
e
+a

g′(x)=
1
x
+
2ax
e2
-
1+2a
e
(x>0)=
2ax2-(1+2a)ex+e2
e2x
=
(x-e)(2ax-e)
e2x
.…(8分)
①當a≤0時,2ax-e<0,又x>0,所以,
當x∈(0,e)時,g'(x)>0,g(x)遞增;
當x∈(e,+∞)時,g'(x)<0,g(x)遞減.
從而g(x)max=g(e)=0.
故,g(x)≤0恒成立.…(11分)
②當a>0時,g′(x)=
(x-e)(2ax-e)
e2x
=(x-e)(
2a
e2
-
1
ex
)

2a
e2
-
1
ex
=
a
e2
,解得x1=
e
a
,則當x>x1時,
2a
e2
-
1
ex
a
e2
;
再令(x-e)
a
e2
=1
,解得x2=
e2
a
+e
,則當x>x2時,(x-e)
a
e2
>1

取x0=max(x1,x2),則當x>x0時,g'(x)>1.
所以,當x∈(x0,+∞)時,g(x)-g(x0)>x-x0,即g(x)>x-x0+g(x0).
這與“g(x)≤0恒成立”矛盾.
綜上所述,a≤0.…(14分)
點評:本題考查利用導數(shù)研究函數(shù)的極值,涉及函數(shù)的恒成立問題,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•嘉興二模)已知點A(-3,0)和圓O:x2+y2=9,AB是圓O的直徑,M和N是AB的三等分點,P(異于A,B)是圓O上的動點,PD⊥AB于D,
PE
ED
(λ>0)
,直線PA與BE交于C,則當λ=
1
8
1
8
時,|CM|+|CN|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興二模)如圖,已知拋物線C1x2=2py的焦點在拋物線C2:y=
12
x2+1
上,點P是拋物線C1上的動點.
(Ⅰ)求拋物線C1的方程及其準線方程;
(Ⅱ)過點P作拋物線C2的兩條切線,M、N分別為兩個切點,設(shè)點P到直線MN的距離為d,求d的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興二模)已知0<a<1,loga(1-x)<logax則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興二模)設(shè)集合A={1,2,3},B={1,3,9},x∈A,且x∉B,則x=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興二模)若log
1
2
(1-x)<log
1
2
x
,則(  )

查看答案和解析>>

同步練習冊答案