【題目】如圖所示的幾何體中,平面ABCD,四邊形ABCD為菱形,,點MN分別在棱FD,ED.

1)若平面MAC,設(shè),求的值;

2)若,平面AEN平面EDC所成的銳二面角為,求BE的長.

【答案】122

【解析】

1)連接,,設(shè),可得∥平面,進而可得,由中位線的性質(zhì)可得答案;

2)如圖建立空間直角坐標系,設(shè),求出平面和平面的法向量,利用空間向量的夾角公式列方程求解.

1)解:連接,,設(shè)

因為四邊形為菱形,所以的中點,

連接,因為∥平面,且平面平面,

所以

因為的中點,所以的中點,

;

2,又四邊形ABCD為菱形,

則四邊形ABCD為正方形,

,

又因為平面,可如圖建立空間直角坐標系,

,

設(shè),則,

因為,所以,

所以,

設(shè)平面的法向量為,

,取

設(shè)平面的法向量為

,取,

因為平面與平面 所成的銳二面角為,

所以

解得,即的長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C:的右準線方程為,右頂點為

求橢圓C的方程;

若M,N是橢圓C上不同于A的兩點,點P是線段MN的中點.

如圖1,若為等腰直角三角形且直角頂點P在x軸上方,求直線MN的方程;

如圖2所示,點Q是線段NA的中點,若的角平分線與x軸垂直,求直線AM的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)若不等式對于任意成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線恒過定點.

若直線經(jīng)過點且與直線垂直,求直線的方程;

若直線經(jīng)過點且坐標原點到直線的距離等于3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是  

A. 利潤最高的月份是2月份,且2月份的利潤為40萬元

B. 利潤最低的月份是5月份,且5月份的利潤為10萬元

C. 收入最少的月份的利潤也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓E的方程為 (a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足BM2MA,直線OM的斜率為.

(1)E的離心率e

(2)設(shè)點C的坐標為(0,-b),N為線段AC的中點,點N關(guān)于直線AB的對稱點的縱坐標為,求E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次摸取獎票的活動中,已知中獎的概率為,若票倉中有足夠多的票則下列說法正確的是  

A. 若只摸取一張票,則中獎的概率為

B. 若只摸取一張票,則中獎的概率為

C. 100個人按先后順序每人摸取1張票則一定有2人中獎

D. 100個人按先后順序每人摸取1張票,則第一個摸票的人中獎概率最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長均為2,平面平面, , 的中點.

(1)證明:

(2)若是棱的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案