【題目】有5人進(jìn)入到一列有7節(jié)車廂的地鐵中,分別求下列情況的概率用數(shù)字作最終答案:
恰好有5節(jié)車廂各有一人;
恰好有2節(jié)不相鄰的空車廂;
恰好有3節(jié)車廂有人.
【答案】(1);(2);(3).
【解析】
人進(jìn)入到一列有7節(jié)車廂的地鐵中,基本事件總數(shù),恰好有5節(jié)車廂各有一人包含的基本事件的個(gè)數(shù),由此能求出恰好有5節(jié)車廂各有一人的概率;
恰好有2節(jié)不相鄰的空車廂包含的基本事件的個(gè)數(shù),由此能求出恰好有2節(jié)不相鄰的空車廂的概率;
恰好有3節(jié)車廂有人包含的基本事件個(gè)數(shù)由此能求出恰好有3節(jié)車廂有人的概率。
人進(jìn)入到一列有7節(jié)車廂的地鐵中,
基本事件總數(shù),
恰好有5節(jié)車廂各有一人包含的基本事件的個(gè)數(shù),
所以恰好有5節(jié)車廂各有一人的概率。
恰好有2節(jié)不相鄰的空車廂包含的基本事件的個(gè)數(shù),
所以恰好有2節(jié)不相鄰的空車廂的概率。
恰好有3節(jié)車廂有人包含的基本事件個(gè)數(shù),
所以恰好有3節(jié)車廂有人的概率。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(﹣x)+f(x+3)=0;當(dāng)x∈(0,3)時(shí),f(x)= ,其中e是自然對數(shù)的底數(shù),且e≈2.72,則方程6f(x)﹣x=0在[﹣9,9]上的解的個(gè)數(shù)為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.
記表示臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的易損零件數(shù).
(1)若,求與的函數(shù)解析式;
(2)若要求 “需更換的易損零件數(shù)不大于”的頻率不小于,求的最小值;
(3)假設(shè)這臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買個(gè)易損零件,或每臺(tái)都購買個(gè)易損零件,分別計(jì)算這臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買臺(tái)機(jī)器的同時(shí)應(yīng)購買個(gè)還是個(gè)易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,,平面ABCD,E為PD的中點(diǎn),.
求四棱錐的體積V;
若F為PC的中點(diǎn),求證平面AEF;
求證平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,求動(dòng)圓圓心的軌跡方程;
(2) 求與雙曲線共漸近線,且過點(diǎn)的雙曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若x=3是函數(shù)f(x)=(x2+ax+1)ex的極值點(diǎn),則f(x)的極大值為( 。
A. ﹣2e B. -2 C. 22 D. 6e﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)< ,則不等式f(x2)< + 的解集為( )
A.(﹣ , )
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱柱的所有棱長都相等,分別為的中點(diǎn).現(xiàn)有下列四個(gè)結(jié)論:
:; :;
:平面; :異面直線與所成角的余弦值為.
其中正確的結(jié)論是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com