【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

【答案】解:(Ⅰ)因?yàn)橄蛄? =(a, b)與 =(cosA,sinB)平行, 所以asinB﹣ =0,由正弦定理可知:sinAsinB﹣ sinBcosA=0,因?yàn)閟inB≠0,
所以tanA= ,可得A= ;
(Ⅱ)a= ,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,
△ABC的面積為: =
【解析】(Ⅰ)利用向量的平行,列出方程,通過正弦定理求解A; (Ⅱ)利用A,以及a= ,b=2,通過余弦定理求出c,然后求解△ABC的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=2,過A1、C1、B三點(diǎn)的平面截去長方體的一個(gè)角后,得到如圖所示的幾何體ABCD﹣A1C1D1 , 且這個(gè)幾何體的體積為10. (Ⅰ)求棱AA1的長;
(Ⅱ)若A1C1的中點(diǎn)為O1 , 求異面直線BO1與A1D1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+3|﹣m,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,使得 成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的方程為x﹣y+4=0,曲線C的參數(shù)方程為
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為 ,判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1的極坐標(biāo)方程為ρ=6cosθ,曲線C2的極坐標(biāo)方程為θ= (p∈R),曲線C1 , C2相交于A,B兩點(diǎn). (Ⅰ)把曲線C1 , C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(Ⅱ)求弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a1=3且(a3﹣1)是(a2﹣1)與a4的等比中項(xiàng).
(1)求an;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn , bn= ,Tn=﹣b1+b2+b3+…+(﹣1)nbn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={x|2 >1},集合B={x|y=lg },則A∩B=(
A.{x|﹣5<x<1}
B.{x|﹣2<x<1}
C.{x|﹣2<x<﹣1}
D.{x|﹣5<x<﹣1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證:f(x2)≥( ﹣1)x2

查看答案和解析>>

同步練習(xí)冊(cè)答案