【題目】已知四棱錐中,側(cè)面底面,,是邊長為2的正三角形底面是菱形,點為的中點
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1) 連結(jié)AC,交BD于O,利用中位線定理證明,結(jié)合線面平行的判定定理證明即可;
(2)建立空間直角坐標(biāo)系,利用坐標(biāo)求出平面PAB和平面PBC的法向量,即可求解.
(1)
連結(jié)AC,交BD于O,連接MO,由于底面ABCD為菱形,O為AC中點
又M為的中點,,又面,面
平面
(2)過作,垂足為,由于為正三角形,為的中點.由于側(cè)面面,由面面垂直的性質(zhì)得面,
由,得∴
以E為坐標(biāo)原點,EP為軸,EA為軸,EB為y軸,建立空間直角坐標(biāo)系.
則
,
設(shè)平面PAB的法向量為,平面PBC的法向量為
由及
得,取,得平面PAB的一個法向量為
同理可求得平面PBC的一個法向量,由法向量的方向得知
所求二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.
(1)求曲線的方程;
(2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標(biāo)原點,焦點在軸上,且過點,直線與橢圓交于兩點(兩點不是左右頂點),若直線的斜率為時,弦的中點在直線上.
(1)求橢圓的方程;
(2)若在橢圓上有相異的兩點(三點不共線),為坐標(biāo)原點,且直線,直線,直線的斜率滿足,求證:是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個命題,其中正確命題的個數(shù)為( )
①命題“,使得”的否定是“,均有”;
②若正整數(shù)和滿足,則;
③在中 ,是的充要條件;
④一條光線經(jīng)過點,射在直線上,反射后穿過點,則入射光線所在直線的方程為;
⑤已知的三個零點分別為一橢圓、一雙曲線、一拋物線的離心率,則為定值.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一幅壁畫的最高點處離地面米,最低點處離地面米.正對壁畫的是一條坡度為的甬道(坡度指斜坡與水平面所成角的正切值),若從離斜坡地面米的處觀賞它.
(1)若對墻的投影(即過作的垂線垂足為投影)恰在線段(包括端點)上,求點離墻的水平距離的范圍;
(2)在(1)的條件下,當(dāng)點離墻的水平距離為多少時,視角()最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要制作一個如圖的框架(單位:米).要求所圍成的總面積為19.5(),其中是一個矩形, 是一個等腰梯形,梯形高, ,設(shè)米, 米.
(1)求關(guān)于的表達(dá)式;
(2)如何設(shè)計,的長度,才能使所用材料最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。
(Ⅰ)求證:AE平面BCD;
(Ⅱ)求二面角A-DC-B的余弦值;
(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com