【題目】己知y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+2,那么不等式2f(x)﹣1<0的解集是( )
A.
B.
C.
D.

【答案】B
【解析】解:因?yàn)閥=f(x)為奇函數(shù),所以當(dāng)x>0時(shí),﹣x<0,

根據(jù)題意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,

當(dāng)x<0時(shí),f(x)=x+2,

代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,

解得x<﹣ ,則原不等式的解集為x<﹣ ;

當(dāng)x≥0時(shí),f(x)=x﹣2,

代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,

解得x< ,則原不等式的解集為0≤x< ,

綜上,所求不等式的解集為{x|x<﹣ 或0≤x< }.

故答案選:B

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解奇偶性與單調(diào)性的綜合的相關(guān)知識(shí),掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x(|x|+4),且f(a2)+f(a)<0,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=2x+x﹣m(m為常數(shù)).
(1)求常數(shù)m的值.
(2)求f(x)的解析式.
(3)若對(duì)于任意x∈[﹣3,﹣2],都有f(k4x)+f(1﹣2x+1)>0成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x﹣
(1)利用定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)當(dāng)x∈(0,1)時(shí),tf(2x)≥2x﹣1恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O為Rt△ABC的外接圓,AB=AC,BC=4,過(guò)圓心O的直線l交圓O于P,Q兩點(diǎn),則 的取值范圍是(
A.[﹣8,﹣1]
B.[﹣8,0]
C.[﹣16,﹣1]
D.[﹣16,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n,s,t∈R+ , m+n=2, ,其中m、n是常數(shù),當(dāng)s+t取最小值 時(shí),m、n對(duì)應(yīng)的點(diǎn)(m,n)是雙曲線 一條弦的中點(diǎn),則此弦所在的直線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖2所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,設(shè)點(diǎn)F是AB的中點(diǎn).
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐B﹣DEG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,點(diǎn)E在CC1上且C1E=3EC
(1)證明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣ax﹣a)ex
(1)討論f(x)的單調(diào)性;
(2)若a∈(0,2),對(duì)于任意x1 , x2∈[﹣4,0],都有 恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案