【題目】已知函數(shù)f(x)=(x2﹣ax﹣a)ex
(1)討論f(x)的單調(diào)性;
(2)若a∈(0,2),對(duì)于任意x1 , x2∈[﹣4,0],都有 恒成立,求m的取值范圍.

【答案】
(1)解:f′(x)=(x+2)(x﹣a)ex,

①若a<﹣2,則f(x)在(﹣∞,a),(﹣2,+∞)上單調(diào)遞增,在(a,﹣2)單調(diào)遞減;

②若a=﹣2,則f(x)在R上單調(diào)遞增;

③若a>﹣2,則f(x)在(﹣∞,﹣2),(a,+∞)上單調(diào)遞增,在(﹣2,a)單調(diào)遞減;


(2)解:由(1)知,當(dāng)a∈(0,2)時(shí),f(x)在(﹣4,﹣2)上單調(diào)遞增,在(﹣2,0)單調(diào)遞減,

所以f(x)max=f(﹣2)=(a+4)e2,f(﹣4)=(3a+16)e4>﹣a=f(0),

故|f(x1)﹣f(x2)|max=|f(﹣2)﹣f(0)|=a(e2+1)+4e2,

|f(x1)﹣f(x2)|<4e2+mea恒成立,即a(e2+1)+4e2<4e2+mea恒成立,

即m> (e2+1)恒成立,

令g(x)= ,x∈(0,2),易知g(x)在其定義域上有最大值g(1)= ,

所以m>


【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)函數(shù)的單調(diào)性求出f(x)的最大值,問題轉(zhuǎn)化為m> (e2+1)恒成立,令g(x)= ,x∈(0,2),根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+2,那么不等式2f(x)﹣1<0的解集是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=4,點(diǎn)E、F分別為AB和PD的中點(diǎn).
(1)求證:直線AF∥平面PEC;
(2)求平面PAD與平面PEC所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=x3+ax2+bx﹣a2﹣7a在x=1處取得極大值10,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 三邊所在直線方程: , ).
(1)判斷 的形狀;
(2)當(dāng) 邊上的高為1時(shí),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為響應(yīng)國(guó)家節(jié)能減排建設(shè)的號(hào)召,喚起人們從自己身邊的小事做起,開展了以“再小的力量也是一種支持”為主題的宣傳教育活動(dòng),其中有兩則公益廣告: ①80部手機(jī),一年就會(huì)增加一噸二氧化氮的排放.
②人們?cè)谙硎芷噹Я说谋憬菔孢m的同時(shí),卻不得不呼吸汽車排放的尾氣.
活動(dòng)組織者為了解是市民對(duì)這兩則廣告的宣傳效果,隨機(jī)對(duì)10﹣60歲的人群抽查了n人,并就兩個(gè)問題對(duì)選取的市民進(jìn)行提問,其抽樣人數(shù)頻率分布直方圖如圖所示,宣傳效果調(diào)查結(jié)果如表所示.
宣傳效果調(diào)查表

廣告一

廣告二

回答正
確人數(shù)

占本組
人數(shù)頻率

回答正
確人數(shù)

占本組
人數(shù)頻率

[10,20)

90

0.5

45

a

[20,30)

225

0.75

k

0.8

[30,40)

b

0.9

252

0.6

[40,50)

160

c

120

d

[50,60]

10

e

f

g


(1)分別寫出n,a,b,c,d的值.
(2)若將表中的頻率近似看作各年齡組正確回答廣告內(nèi)容的概率,規(guī)定正確回答廣告一的內(nèi)容得30元,廣告二的內(nèi)容得60元.組織者隨機(jī)請(qǐng)一家庭的兩成員(大人45歲,孩子17歲),指定大人回答廣告一的內(nèi)容,孩子回答廣告二的內(nèi)容,求該家庭獲得獎(jiǎng)金數(shù)ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的可導(dǎo)函數(shù)f(x)滿足f(1)=1,且2f′(x)>1,當(dāng)x∈[﹣ , ]時(shí),不等式f(2cosx)> ﹣2sin2 的解集為(
A.( ,
B.(﹣ ,
C.(0,
D.(﹣ ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)= (a∈R)在點(diǎn)(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)若對(duì)于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=(x+1)f(x)﹣b(x﹣1)在[1,e]上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)b取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個(gè)邊長(zhǎng)為2的正三角形,DC=4,O為BD的中點(diǎn),E為PA的中點(diǎn). (Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求證:OE∥平面PDC;
(Ⅲ)求面PAD與面PBC所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案