【題目】(理)已知數(shù)列滿足),首項

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和;

3)數(shù)列滿足,記數(shù)列的前項和為,ABC的內(nèi)角,若對于任意恒成立,求角的取值范圍.

【答案】(1);(2);(3)

【解析】

1)通過在兩邊同時除以,進而可知數(shù)列是首項為、公差為1的等差數(shù)列,計算即得結(jié)論;

2)通過(1),利用錯位相減法計算即得結(jié)論;

3)通過(1)計算可知,進而利用錯位相減法計算可知,利用及二倍角公式化簡可知,結(jié)合計算即得結(jié)論.

1)數(shù)列滿足,

,又,

為常數(shù),

數(shù)列是首項為、公差為1的等差數(shù)列,

,;

2)由(1)可知,

,

兩式錯位相減,得:

,

;

3)由(1)可知,

數(shù)列滿足,

,

恒成立,且對于任意,成立,

,即,

,即

,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則直線y=x+1與曲線的交點個數(shù)為_____;若關(guān)于x的方程有三個不等實根,則實數(shù)a的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列說法正確的是( )

1的極小值點;

2)函數(shù)有且只有1個零點;

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.

(1)若,求數(shù)列的通項公式;

(2)若,且數(shù)列是公比等于2的等比數(shù)列,求的值,使數(shù)列也是等比數(shù)列;

(3)若,且,數(shù)列有最大值與最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于雙曲線(),若點滿足,則稱的外部;若點滿足,則稱的內(nèi)部.

(1)證明:直線上的點都在的外部.

(2)若點的坐標(biāo)為,點的內(nèi)部或上,求的最小值.

(3)過點,圓()內(nèi)部及上的點構(gòu)成的圓弧長等于該圓周長的一半,求、滿足的關(guān)系式及的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于雙曲線),若點滿足,則稱的外部;若點滿足,則稱的內(nèi)部.

1)若直線上點都在的外部,求的取值范圍;

2)若過點,圓)在內(nèi)部及上的點構(gòu)成的圓弧長等于該圓周長的一半,求滿足的關(guān)系式及的取值范圍;

3)若曲線)上的點都在的外部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,小凳凳面為圓形,凳腳為三根細鋼管.考慮到鋼管的受力等因素,設(shè)計的小凳應(yīng)滿足:三根細鋼管相交處的節(jié)點與凳面圓形的圓心的連線垂直于凳面和地面,且分細鋼管上下兩段的比值為,三只凳腳與地面所成的角均為.、、是凳面圓周的三等分點,厘米,求凳子的高度及三根細鋼管的總長度(精確到).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知表示不小于的最小整數(shù),例如.

1)設(shè),,,求實數(shù)的取值范圍;

2)設(shè)在區(qū)間上的值域為,集合中元素的個數(shù)為,求證:;

3)設(shè)),,若對于,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖圓錐PO,軸截面PAB是邊長為2的等邊三角形,過底面圓心O作平行于母線PA的平面,與圓錐側(cè)面的交線是以E為頂點的拋物線的一部分,則該拋物線的焦點到其頂點E的距離為( )

A.1B.C.D.

查看答案和解析>>

同步練習(xí)冊答案